Publications by authors named "Kwong Yok Tsang"

Natural killer (NK) cells are cellular components of the innate immune system that can recognize and suppress the proliferation of cancer cells. NK cells can eliminate cancer cells through direct lysis, by secreting perforin and granzymes, or through antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves the binding of the Fc gamma receptor IIIa (CD16), present on NK cells, to the constant region of an antibody already bound to cancer cells.

View Article and Find Full Text PDF

NEO-201 is an IgG1 humanized monoclonal antibody (mAb) that binds to tumor-associated variants of carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-5 and CEACAM-6. NEO-201 reacts to colon, ovarian, pancreatic, non-small cell lung, head and neck, cervical, uterine and breast cancers, but is not reactive against most normal tissues. NEO-201 can kill tumor cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) to directly kill tumor cells expressing its target.

View Article and Find Full Text PDF

Natural killer (NK) cells are known to play a role in mediating innate immunity, in enhancing adaptive immune responses, and have been implicated in mediating anti-tumor responses via antibody-dependent cell-mediated cytotoxicity (ADCC) by reactivity of CD16 with the Fc region of human IgG1 antibodies. The NK-92 cell line, derived from a lymphoma patient, has previously been well characterized and adoptive transfer of irradiated NK-92 cells has demonstrated safety and shown preliminary evidence of clinical benefit in cancer patients. The NK-92 cell line, devoid of CD16, has now been engineered to express the high affinity (ha) CD16 V158 FcγRIIIa receptor, as well as engineered to express IL-2; IL-2 has been shown to replenish the granular stock of NK cells, leading to enhanced perforin- and granzyme-mediated lysis of tumor cells.

View Article and Find Full Text PDF

The epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) erlotinib has been approved for years as a first-line therapy for patients harboring EGFR-sensitizing mutations. With the promising implementation of immunotherapeutic strategies for the treatment of lung cancer, there is a growing interest in developing combinatorial therapies that could utilize immune approaches in the context of conventional or targeted therapies. Tumor cells are known to evade immune attack by multiple strategies, including undergoing phenotypic plasticity via a process designated as the epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted.

View Article and Find Full Text PDF

Several anti-PD-1/PD-L1 monoclonal antibodies (mAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these mAbs is to inhibit PD-1 on immune cells interacting with PD-L1 on tumor cells. These mAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective mAb-mediated cancer therapies.

View Article and Find Full Text PDF

The transcription factor brachyury is a major driver of epithelial to mesenchymal transition in human carcinoma cells. It is overexpressed in several human tumor types versus normal adult tissues, except for testes and thyroid. Overexpression is associated with drug resistance and poor prognosis.

View Article and Find Full Text PDF

Therapeutic cancer vaccines have the potential of being integrated in the therapy of numerous cancer types and stages. The wide spectrum of vaccine platforms and vaccine targets is reviewed along with the potential for development of vaccines to target cancer cell "stemness," the epithelial-to-mesenchymal transition (EMT) phenotype, and drug-resistant populations. Preclinical and recent clinical studies are now revealing how vaccines can optimally be used with other immune-based therapies such as checkpoint inhibitors, and so-called nonimmune-based therapeutics, radiation, hormonal therapy, and certain small molecule targeted therapies; it is now being revealed that many of these traditional therapies can lyse tumor cells in a manner as to further potentiate the host immune response, alter the phenotype of nonlysed tumor cells to render them more susceptible to T-cell lysis, and/or shift the balance of effector:regulatory cells in a manner to enhance vaccine efficacy.

View Article and Find Full Text PDF

Background: The epithelial-mesenchymal transition (EMT) has been implicated as an important process in tumor cell invasion, metastasis, and drug resistance. The transcription factor brachyury has recently been described as a driver of EMT of human carcinoma cells.

Methods: Brachyury mRNA and protein expression was analyzed in human breast carcinomas and benign tissues.

View Article and Find Full Text PDF

Recent studies have suggested that pan inhibitors of dipeptidyl peptidase-4 activity and/or structure homologs (DASH), including ARI-4175, can mediate tumor regression by immune-mediated mechanisms. This study assessed the potential of combining ARI-4175 with cancer vaccines. We evaluated ARI-4175's effect on immunogenic modulation, ability to sensitize tumor cells to antigen-specific CTL killing, effect on immune-cell subsets and function, and antitumor activity in 2 tumor models, both as a monotherapy and in combination with a recombinant viral or dendritic cell (DC)-based tumor-cell vaccine.

View Article and Find Full Text PDF

Aberrant expression of the T-box transcription factor brachyury in human carcinomas drives the phenomenon of epithelial-mesenchymal transition (EMT), a phenotypic modulation that facilitates tumor dissemination and resistance to conventional therapies, including chemotherapy and radiotherapy. By generating isogenic cancer cell lines with various levels of brachyury expression, we demonstrate that high levels of brachyury also significantly reduce the susceptibility of cancer cells to lysis by both antigen-specific T cells and natural killer cells. Our results indicated that resistance of brachyury-high tumor cells to immune-mediated attack was due to inefficient caspase-dependent apoptosis, manifested as inefficient nuclear lamin degradation in the presence of activated effector caspases.

View Article and Find Full Text PDF

We recently reported the clinical results of a Phase I trial combining ipilimumab with a vaccine containing transgenes for prostate-specific antigen (PSA) and for a triad of costimulatory molecules (PROSTVAC) in patients with metastatic castration-resistant prostate cancer. Thirty patients were treated with escalating ipilimumab and a fixed dose of vaccine. Of 24 chemotherapy-naïve patients, 58 % had a PSA decline.

View Article and Find Full Text PDF

The MUC1 tumor-associated antigen is overexpressed in the majority of human carcinomas and several hematologic malignancies. Much attention has been paid to the hypoglycosylated variable number of tandem repeats (VNTR) region of the N-terminus of MUC1 as a vaccine target, and recombinant viral vector vaccines are also being evaluated that express the entire MUC1 transgene. While previous studies have described MUC1 as a tumor-associated tissue differentiation antigen, studies have now determined that the C-terminus of MUC1 (MUC1-C) is an oncoprotein, and its expression is an indication of poor prognosis in numerous tumor types.

View Article and Find Full Text PDF

Background: Talactoferrin alfa (talactoferrin), an agent with immune-stimulating properties, has demonstrated safety and preliminary efficacy in clinical trials.

Methods: Ten patients (five males and five females) with stage IV non-small cell lung cancer (NSCLC) in a single-arm pilot study received orally administered talactoferrin (1.5 g, b.

View Article and Find Full Text PDF

The primary end point of this study was to determine the safety and feasibility of intraprostatic administration of PSA-TRICOM vaccine [encoding transgenes for prostate-specific antigen (PSA) and 3 costimulatory molecules] in patients with locally recurrent or progressive prostate cancer. This trial was a standard 3 + 3 dose escalation with 6 patients each in cohorts 4 and 5 to gather more immunologic data. Nineteen of 21 patients enrolled had locally recurrent prostate cancer after definitive radiation therapy, and 2 had no local therapy.

View Article and Find Full Text PDF

Certain chemotherapeutic regimens trigger cancer cell death while inducing dendritic cell maturation and subsequent immune responses. However, chemotherapy-induced immunogenic cell death (ICD) has thus far been restricted to select agents. In contrast, several chemotherapeutic drugs modulate antitumor immune responses, despite not inducing classic ICD.

View Article and Find Full Text PDF

Purpose: The epithelial-mesenchymal transition (EMT) is emerging as a critical factor for the progression and metastasis of carcinomas, as well as drug resistance. The T-box transcription factor Brachyury has been recently characterized as a driver of EMT in human carcinoma cells. The purpose of this study was to characterize Brachyury as a potential target for lung cancer therapy.

View Article and Find Full Text PDF

Purpose: PANVAC is a recombinant poxviral vaccine that contains transgenes for MUC-1, CEA, and 3 T-cell costimulatory molecules. This study was conducted to obtain preliminary evidence of clinical response in metastatic breast and ovarian cancer patients.

Experimental Design: Twenty-six patients were enrolled and given monthly vaccinations.

View Article and Find Full Text PDF

Objective: Previous studies have demonstrated the ability of non-lethal doses of radiation to alter the phenotype of tumor cells to facilitate immune mediated killing. This pilot study evaluated the tolerability of a vector-based vaccine targeting carcinoembryonic antigen (CEA) in combination with radiation therapy in patients with gastrointestinal malignancies metastatic to the liver.

Methods: Patients enrolled had progressive CEA(+) tumors with metastatic liver lesions.

View Article and Find Full Text PDF

Purpose: We previously reported a randomized phase II clinical trial combining a poxvirus-based vaccine encoding prostate-specific antigen (PSA) with radiotherapy in patients with localized prostate cancer. Here, we investigate whether vaccination against PSA induced immune responses to additional tumor-associated antigens and how this influenced clinical outcome.

Experimental Design: Pretreatment and posttreatment serum samples from patients treated with vaccine + external beam radiation therapy (EBRT) versus EBRT alone were evaluated by Western blot and serologic screening of a prostate cancer cDNA expression library (SEREX) to assess the development of treatment-associated autoantibody responses.

View Article and Find Full Text PDF

Adenoviral transduction with CD40L and poxviral transduction with B7-1, ICAM-1, and LFA-3 (TRICOM) have been used to enhance the antigen-presenting capacity of chronic lymphocytic leukemia (CLL) cells. This study compares the same vector (modified vaccinia virus strain Ankara (MVA)) encoding CD40L or TRICOM for its ability to enhance the immunogenicity of CLL cells. CLL cells from some patients showed differential responses to each vector in terms of induction of autologous T-cell responses.

View Article and Find Full Text PDF

A concurrent multicenter, randomized Phase II trial employing a recombinant poxviral vaccine provided evidence of enhanced median overall survival (OS) (p = 0.0061) in patients with metastatic castrate-resistant prostate cancer (mCRPC). The study reported here employed the identical vaccine in mCRPC to investigate the influence of GM-CSF with vaccine, and the influence of immunologic and prognostic factors on median OS.

View Article and Find Full Text PDF

In chronic lymphocytic leukemia (CLL), malignant B cells and nonmalignant T cells exhibit dysfunction. We previously demonstrated that infection of CLL cells with modified vaccinia Ankara (MVA) expressing the costimulatory molecules B7-1, ICAM-1, and LFA-3 (designated TRICOM) increased expression of these costimulatory molecules on the surface of CLL cells and thus augmented their antigen-presenting capability. Here, we evaluate the effect of MVA-TRICOM-modified CLL cells on T cells.

View Article and Find Full Text PDF

Purpose: We have previously reported on the safety and immunologic response of a poxvirus-based vaccine encoding prostate-specific antigen (PSA) used in combination with radiation therapy in patients with localized prostate cancer. We hypothesized that a "metronomic" dose of interleukin 2 (IL-2) as a biological adjuvant would cause less toxicity while maintaining immunologic response.

Experimental Design: Eighteen patients with localized prostate cancer were treated in a single-arm trial using previously established doses of vaccine and radiation therapy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbt8fstvtm0hh5k7eivunp7pjvfh5iam1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once