hRpn13/ADRM1 links substrate recruitment with deubiquitination at the proteasome through its proteasome- and ubiquitin-binding Pru domain and DEUBAD domain, which binds and activates deubiquitinating enzyme (DUB) UCHL5/Uch37. Here, we edit the HCT116 colorectal cancer cell line to delete part of the hRpn13 Pru, producing cells that express truncated hRpn13 (trRpn13), which is competent for UCHL5 binding but defective for proteasome interaction. cells demonstrate reduced levels of proteasome-bound ubiquitinated proteins, indicating that the loss of hRpn13 function at proteasomes cannot be fully compensated for by the two other dedicated substrate receptors (hRpn1 and hRpn10).
View Article and Find Full Text PDFKidney Blood Press Res
January 2020
Background/aims: Acute kidney injury (AKI) is a serious complication of sepsis and has a high morbidity and mortality rate. Caspase-11 induces pyroptosis, a form of programmed cell death that plays a critical role in endotoxic shock, but its role in tubular epithelial cell death and whether it contributes to sepsis-associated AKI remains unknown.
Methods: The caspase-11-/- mouse received an intraperitoneal injection of lipopolysaccharide (LPS, 40 mg/kg body weight).
Background: derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the -derived cell line Tni-FNL.
Methods: By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL.
KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines.
View Article and Find Full Text PDFAcute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo.
View Article and Find Full Text PDFThe generation of functional arterial endothelial cells (aECs) from embryonic stem cells (ESCs) holds great promise for vascular tissue engineering. However, the mechanisms underlying their generation and the potential of aECs in revascularizing ischemic tissue are not fully understood. Here, we observed that hypoxia exposure of mouse ESCs induced an initial phase of HIF1α-mediated upregulation of the transcription factor Etv2, which in turn induced the commitment to the EC fate.
View Article and Find Full Text PDFStore-operated Ca entry (SOCE) is critical for salivary gland fluid secretion. We report that radiation treatment caused persistent salivary gland dysfunction by activating a TRPM2-dependent mitochondrial pathway, leading to caspase-3-mediated cleavage of stromal interaction molecule 1 (STIM1) and loss of SOCE. After irradiation, acinar cells from the submandibular glands of , but not those from mice, displayed an increase in the concentrations of mitochondrial Ca and reactive oxygen species, a decrease in mitochondrial membrane potential, and activation of caspase-3, which was associated with a sustained decrease in STIM1 abundance and attenuation of SOCE.
View Article and Find Full Text PDFA central component of receptor-evoked Ca(2+) signaling is store-operated Ca(2+) entry (SOCE), which is activated by the assembly of STIM1-Orai1 channels in endoplasmic reticulum (ER) and plasma membrane (PM) (ER-PM) junctions in response to depletion of ER Ca(2+). We report that STIM2 enhances agonist-mediated activation of SOCE by promoting STIM1 clustering in ER-PM junctions at low stimulus intensities. Targeted deletion of STIM2 in mouse salivary glands diminished fluid secretion in vivo and SOCE activation in dispersed salivary acinar cells stimulated with low concentrations of muscarinic receptor agonists.
View Article and Find Full Text PDFThe TRP-canonical (TRPC) subfamily, which consists of seven members (TRPC1-TRPC7), are Ca(2+)-permeable cation channels that are activated in response to receptor-mediated PIP2 hydrolysis via store-dependent and store-independent mechanisms. These channels are involved in a variety of physiological functions in different cell types and tissues. Of these, TRPC6 has been linked to a channelopathy resulting in human disease.
View Article and Find Full Text PDFCurr Top Membr
February 2014
Store-operated calcium entry (SOCE) is activated in response to depletion of the endoplasmic reticulum-Ca(2+) stores following stimulation of plasma membrane receptors that couple to PIP2 hydrolysis and IP3 generation. Search for the molecular components of SOCE channels led to the identification of mammalian transient receptor potential canonical (TRPC) family of calcium-permeable channels (TRPC1-TRPC7), which are all activated in response to stimuli that result in PIP2 hydrolysis. While several TRPCs, including TRPC1, TRPC3, and TRPC4, have been implicated in SOCE, the data are most consistent for TRPC1.
View Article and Find Full Text PDFNeurotransmitter regulation of salivary fluid secretion is mediated by activation of Ca(2+) influx. The Ca(2+)-permeable transient receptor potential canonical 1 (TRPC1) channel is crucial for fluid secretion. However, the mechanism(s) involved in channel assembly and regulation are not completely understood.
View Article and Find Full Text PDFPrimary Sjögren's Syndrome (pSS) is an autoimmune disease involving salivary and other exocrine glands that leads to progressive lymphocytic infiltration into the gland, tissue damage, and secretory defects. The mechanism underlying this disease remains poorly understood. Here we report that mice with T-cell-targeted deletion of Stromal Interaction Molecule (STIM) 1 and STIM2 [double-knockout (DKO)] mice develop spontaneous and severe pSS-like autoimmune disease, displaying major hallmarks of the disease.
View Article and Find Full Text PDFThere is controversy as to whether TRP channels participate in mediating store-operated current (I(SOC)) and store-operated Ca(2+) entry (SOCE). Our recent study has demonstrated that TRPC1 forms heteromeric channels with TRPV4 in vascular endothelial cells and that Ca(2+) store depletion enhances the vesicle trafficking of heteromeric TRPV4-C1 channels, causing insertion of more channels into the plasma membrane in vascular endothelial cells. In the present study, we determined whether the enhanced TRPV4-C1 insertion to the plasma membrane could contribute to SOCE and I(SOC).
View Article and Find Full Text PDFStore-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established.
View Article and Find Full Text PDFStore-operated Ca(2+) entry (SOCE) is activated in response to depletion of the ER-Ca(2+) stores by the ER Ca(2+) sensor protein, STIM1 which oligomerizes and moves to ER/PM junctional domains where it interacts with and activates channels involved in SOCE. Two types of channel activities have been described. I(CRAC), via Ca(2+) release-activated Ca(2+) (CRAC) channel, which displays high Ca(2+) selectivity and accounts for the SOCE and cell function in T lymphocytes, mast cells, platelets, and some types of smooth muscle and endothelial cells.
View Article and Find Full Text PDFPolarized Ca(2+) signals in secretory epithelial cells are determined by compartmentalized localization of Ca(2+) signaling proteins at the apical pole. Recently the ER Ca(2+) sensor STIM1 (stromal interaction molecule 1) and the Orai channels were shown to play a critical role in store-dependent Ca(2+) influx. STIM1 also gates the transient receptor potential-canonical (TRPC) channels.
View Article and Find Full Text PDFBackground/aims: ATP can activate several Ca(2+) influx channels in vascular endothelial cells. For example, it stimulates TRPC channels via capacitative and noncapacitative Ca(2+) entry (CCE and non-CCE, respectively) mechanisms; it also directly acts on P2X purinoceptors, resulting in Ca(2+) influx. In the present study, we tested the hypothesis that cyclic nucleotide-gated (CNG) channels also contribute to ATP-induced non-CCE.
View Article and Find Full Text PDFJ Mol Cell Cardiol
September 2008
Epinephrine, through its action on beta-adrenoceptors, may induce endothelium-dependent vascular dilation, and this action is partly mediated by a cytosolic Ca(2+) ([Ca(2+)](i)) change in endothelial cells. In the present study, we explored the molecular identity of the channels that mediate epinephrine-induced endothelial Ca(2+) influx and subsequent vascular relaxation. Patch clamp recorded an epinephrine- and cAMP-activated cation current in the primary cultured bovine aortic endothelial cells (BAECs) and H5V endothelial cells.
View Article and Find Full Text PDFOrai1 and TRPC1 have been proposed as core components of store-operated calcium release-activated calcium (CRAC) and store-operated calcium (SOC) channels, respectively. STIM1, a Ca(2+) sensor protein in the endoplasmic reticulum, interacts with and mediates store-dependent regulation of both channels. We have previously reported that dynamic association of Orai1, TRPC1, and STIM1 is involved in activation of store-operated Ca(2+) entry (SOCE) in salivary gland cells.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
May 2008
Objective: Adenosine is a cAMP-elevating vasodilator that induces both endothelium-dependent and -independent vasorelaxation. An increase in cytosolic Ca(2+) ([Ca(2+)](i)) is a crucial early signal in the endothelium-dependent relaxation elicited by adenosine. This study explored the molecular identity of channels that mediate adenosine-induced Ca(2+) influx in vascular endothelial cells.
View Article and Find Full Text PDFAgonist-induced Ca(2+) entry via store-operated Ca(2+) (SOC) channels is suggested to regulate a wide variety of cellular functions, including salivary gland fluid secretion. However, the molecular components of these channels and their physiological function(s) are largely unknown. Here we report that attenuation of SOC current underlies salivary gland dysfunction in mice lacking transient receptor potential 1 (TRPC1).
View Article and Find Full Text PDFAlthough store-operated calcium entry (SOCE) was identified more that two decades ago, understanding the molecular mechanisms that regulate and mediate this process continue to pose a major challenge to investigators in this field. Thus, there has been major focus on determining which of the models proposed for this mechanism is valid and conclusively establishing the components of the store-operated calcium (SOC) channel(s). The transient receptor potential canonical (TRPC) proteins have been suggested as candidate components of the elusive store-operated Ca(2+) entry channel.
View Article and Find Full Text PDFStore-operated calcium entry (SOCE) is a ubiquitous mechanism that is mediated by distinct SOC channels, ranging from the highly selective calcium release-activated Ca2+ (CRAC) channel in rat basophilic leukemia and other hematopoietic cells to relatively Ca2+-selective or non-selective SOC channels in other cells. Although the exact composition of these channels is not yet established, TRPC1 contributes to SOC channels and regulation of physiological function of a variety of cell types. Recently, Orai1 and STIM1 have been suggested to be sufficient for generating CRAC channels.
View Article and Find Full Text PDFBradykinin is a potent vasoactive nonapeptide. It elicits a rise in cytosolic Ca(2+) (Ca(2+))(i) in endothelial cells, resulting in Ca(2+)-dependent synthesis and release of endothelial vasodilators. In the present study, we investigated the mechanism of bradykinin-induced Ca(2+) influx in primary cultured rat aortic endothelial cells and in a mouse heart microvessel endothelial cell line (H5V).
View Article and Find Full Text PDFCyclic nucleotide-gated (CNG) ion channels are Ca2+-permeable nonselective cation channels that are directly gated by the binding of cAMP or cGMP. Previous studies have identified the expression of CNGA1 channels in vascular endothelial cells. The opening of CNG channels is expected to result in a rise in endothelial cytosolic Ca2+, which may trigger multiple physiological changes.
View Article and Find Full Text PDF