Variants (pathogenic) of the gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in -related DCM is a consequence of the disassembly of lamins A and C. This suggests that variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by . Nonetheless, the pathophysiological roles of in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either or allele and iPSC-CMs from a non-affected female control.
View Article and Find Full Text PDFJHEP Rep
January 2022
Background & Aims: Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism caused by loss-of-function mutations in , which encodes a copper-transporting protein. It is characterized by excessive copper deposition in tissues, predominantly in the liver and brain. We sought to investigate whether gene-corrected patient-specific induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps) could serve as an autologous cell source for cellular transplantation therapy in WD.
View Article and Find Full Text PDFInherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies.
View Article and Find Full Text PDFInt J Cardiol
January 2020
Aims: To recapitulate progressive human dilated cardiomyopathy (DCM) and heart block in the Lmna R225X mutant mice model and investigate the molecular basis of LMNA mutation induced cardiac conduction disorders (CD); To investigate the potential interventional impact of exercise endurance.
Methods And Results: A Lmna R225X knock-in mice model in either heterozygous or homozygous genotype was generated. Electrical remodeling was observed with higher occurrence of AV block from neonatal and aged mutant mice as measured by surface electrocardiogram and atrio-ventricular Wenckebach point detection.
Empagliflozin, a sodium-glucose co-transporter (SGLT) inhibitor, reduces heart failure and sudden cardiac death but the underlying mechanisms remain elusive. In cardiomyocytes, SGLT1 and SGLT2 expression is upregulated in diabetes mellitus, heart failure, and myocardial infarction. We hypothesise that empagliflozin exerts direct effects on cardiomyocytes that attenuate diabetic cardiomyopathy.
View Article and Find Full Text PDFPreclinical studies have shown benefit of apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL) raising in atherosclerosis; however, this has not yet translated into a successful clinical therapy. Our studies demonstrate that apoA-I raising is more effective at reducing early-stage atherosclerosis than late-stage disease, indicating that the timing of HDL raising is a critical factor in its atheroprotective effects. To date, HDL-raising clinical trials have only been performed in aged patients with advanced atherosclerotic disease.
View Article and Find Full Text PDFBackground: Precision medicine is an emerging approach to disease treatment and prevention that takes into account individual variability in the environment, lifestyle, and genetic makeup of patients. Patient-specific human induced pluripotent stem cells hold promise to transform precision medicine into real-life clinical practice. Lamin A/C (LMNA)-related cardiomyopathy is the most common inherited cardiomyopathy in which a substantial proportion of mutations in the gene are of nonsense mutation.
View Article and Find Full Text PDFBackground: Danon disease is an X-linked disorder that leads to fatal cardiomyopathy caused by a deficiency in lysosome-associated membrane protein-2 (LAMP2). In female patients, a later onset and less severe clinical phenotype have been attributed to the random inactivation of the X chromosome carrying the mutant diseased allele. We generated a patient-specific induced pluripotent stem cell (iPSCs)-based model of Danon disease to evaluate the therapeutic potential of Xi-chromosome reactivation using a DNA methylation inhibitor.
View Article and Find Full Text PDFLaminopathy is a disease closely related to deficiency of the nuclear matrix protein lamin A/C or failure in prelamin A processing, and leads to accumulation of the misfold protein causing progeria. The resultant disrupted lamin function is highly associated with abnormal nuclear architecture, cell senescence, apoptosis, and unstable genome integrity. To date, the effects of loss in nuclear integrity on the susceptible organ, striated muscle, have been commonly associated with muscular dystrophy, dilated cardiac myopathy (DCM), and conduction defeats, but have not been studied intensively.
View Article and Find Full Text PDFPatients with Danon disease may suffer from severe cardiomyopathy, skeletal muscle dysfunction as well as varying degrees of mental retardation, in which the primary deficiency of lysosomal membrane-associated protein-2 (LAMP2) is considerably associated. Owing to the scarcity of human neurons, the pathological role of LAMP2 deficiency in neural injury of humans remains largely elusive. However, the application of induced pluripotent stem cells (iPSCs) may shed light on overcoming such scarcity.
View Article and Find Full Text PDFInt J Cardiol
January 2016
Background: Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis.
Methods: Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog, idebenone (IDE) or the iron chelator, deferiprone (DFP), which are both under clinical trial.
Results: DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 μM and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 μM.
J Biomed Nanotechnol
October 2014
Human inherited cardiomyopathies are one of the major etiologies for heart failure which are associated with significant mortality and morbidity. Unfortunately, there are lack of effective specific therapies for human cardiomyopathies due to the limited understanding on their pathophysiology. Currently, most of the mechanistic studies of human cardiomyopathy are based on transgenic mouse models and invasive collection of limited amount of myocardial biopsy specimen.
View Article and Find Full Text PDFThe lack of appropriate human cardiomyocyte-based experimental platform has largely hindered the study of cardiac diseases and the development of therapeutic strategies. To date, somatic cells isolated from human subjects can be reprogramed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into functional cardiomyocytes. This powerful reprogramming technology provides a novel in vitro human cell-based platform for the study of human hereditary cardiac disorders.
View Article and Find Full Text PDFPflugers Arch
September 2014
Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies.
View Article and Find Full Text PDFWhile human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes, their immature phenotypes limit their therapeutic application for myocardial regeneration. We sought to determine whether electrical stimulation could enhance the differentiation and maturation of hESC-derived cardiomyocytes. Cardiac differentiation was induced in a HES3 hESC line via embryoid bodies formation treated with a p38 MAP kinase inhibitor.
View Article and Find Full Text PDFThe carotid body (CB) plays an important role in the alteration of cardiorespiratory activity in chronic intermittent hypoxia (IH) associated with sleep-disordered breathing, which may be mediated by local expression of the renin-angiotensin system (RAS). We hypothesized a pathogenic role for IH-induced RAS expression in the CB. The CB expression of RAS components was examined in rats exposed to IH resembling a severe sleep-apnoeic condition for 7 days.
View Article and Find Full Text PDFAims: We identified an autosomal dominant non‐sense mutation (R225X) in exon 4 of the lamin A/C (LMNA) gene in a Chinese family spanning 3 generations with familial dilated cardiomyopathy (DCM). In present study, we aim to generate induced pluripotent stem cells derived cardiomyocytes (iPSC‐CMs) from an affected patient with R225X and another patient bearing LMNA frame‐shift mutation for drug screening.
Methods And Results: Higher prevalence of nuclear bleb formation and micronucleation was present in LMNA(R225X/WT) and LMNA(Framshift/WT) iPSC‐CMs.
Hum Mol Genet
April 2013
In this paper, we report a novel heterozygous mutation of A285V codon conversion on exon 4 of the desmin (DES), using whole exome sequencing (WES) in an isolated proband with documented dilated cardiomyopathy (DCM). This mutation is predicted to cause three-dimensional structure changes of DES. Immunohistological and electron microscopy studies demonstrated diffuse abnormal DES aggregations in DCM-induced-pluripotent stem cell (iPSC)-derived cardiomyocytes, and control-iPSC-derived cardiomyocytes transduced with A285V-DES.
View Article and Find Full Text PDFMaladaptive changes in the carotid body (CB) induced by chronic intermittent hypoxia (IH) account for the pathogenesis of cardiovascular morbidity in patients with sleep-disordered breathing. We postulated that the proinflammatory cytokines, namely interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and cytokine receptors (IL-1r1, gp130 and TNFr1) locally expressed in the rat CB play a pathophysiological role in IH-induced CB inflammation. Results showed increased levels of oxidative stress (serum 8-isoprostane and nitrotyrosine in the CB) in rats with 7-day IH treatment resembling recurrent apneic conditions when compared with the normoxic control.
View Article and Find Full Text PDFOur previous study demonstrated the direct involvement of the HIF-1α subunit in the promotion of cardiac differentiation of murine embryonic stem cells (ESCs). We report the use of cobalt chloride to induce HIF-1α stabilization in human ESCs to promote cardiac differentiation. Treatment of undifferentiated hES2 human ESCs with 50 μM cobalt chloride markedly increased protein levels of the HIF-1α subunit, and was associated with increased expression of early cardiac specific transcription factors and cardiotrophic factors including NK2.
View Article and Find Full Text PDF