Wound healing involves a sophisticated biological process that relies on ideal conditions to advance through various stages of repair. Modern wound dressings are designed to imitate the natural surroundings around cells and offer properties such as moisture regulation, strength, and antimicrobial defense to boost healing. A recent research project unveiled a new type of gelatin (Gel)/dextran (Dex) hydrogels, linked through Diels-Alder (D-A) reactions, loaded with silver nanoparticles (Ag-NPs) for cutting-edge wound treatment.
View Article and Find Full Text PDFThis comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues.
View Article and Find Full Text PDFMethotrexate (MTX) has poor water solubility and low bioavailability, and cancer cells can become resistant to it, which limits its safe delivery to tumor sites and reduces its clinical efficacy. Herein, we developed novel redox-responsive hybrid nanoparticles (NPs) from hyaluronic acid (HA) and 3-mercaptopropionic acid (MPA)-coated gold NPs (gold@MPA NPs), which were further conjugated with folic acid (FA). The design of FA-HA-ss-gold NPs aimed at enhancing cellular uptake specifically in cancer cells using an active FA/HA dual targeting strategy for enhanced tumor eradication.
View Article and Find Full Text PDFIn anti-cancer metastasis treatment, precise drug delivery to cancer cells remains a challenge. Innovative nanocomposites are developed to tackle these issues effectively. The approach involves the creation of manganese oxide (MnO) nanoparticles (NPs) and their functionalization using trisodium citrate to yield functionalized MnO NPs (F-MnO NPs), with enhanced water solubility, stability, and biocompatibility.
View Article and Find Full Text PDFChemotherapy is a conventional treatment that uses drugs to kill cancer cells; however, it may induce side effects and may be incompletely effective, leading to the risk of tumor recurrence. To address this issue, we developed novel injectable thermal/near-infrared (NIR)-responsive hydrogels to control drug release. The injectable hydrogel formulation was composed of biocompatible alginates, poly(-acryloyl glycinamide) (PNAGA) copolymers with an upper critical solution temperature, and NIR-responsive cross-linkers containing coumarin groups, which were gelated through bioorthogonal inverse electron demand Diels-Alder reactions.
View Article and Find Full Text PDFNear-infrared (NIR) light-responsive hydrogels have emerged as a highly promising strategy for effective anticancer therapy owing to the remotely controlled release of chemotherapeutic molecules with minimal invasive manner. In this study, novel NIR-responsive hydrogels were developed from reactive oxygen species (ROS)-cleavable thioketal cross-linkers which possessed terminal tetrazine groups to undergo a bio-orthogonal inverse electron demand Diels Alder click reaction with norbornene modified carboxymethyl cellulose. The hydrogels were rapidly formed under physiological conditions and generated N gas as a by-product, which led to the formation of porous structures within the hydrogel networks.
View Article and Find Full Text PDFNovel chemically cross-linked hydrogels derived from carboxymethyl cellulose (CMC) and alginate (Alg) were prepared through the utilization of the norbornene (Nb)-methyl tetrazine (mTz) click reaction. The hydrogels were designed to generate reactive oxygen species (ROS) from an NIR dye, indocyanine green (ICG), for combined photothermal and photodynamic therapy (PTT/PDT). The cross-linking reaction between Nb and mTz moieties occurred via an inverse electron-demand Diels-Alder chemistry under physiological conditions avoiding the need for a catalyst.
View Article and Find Full Text PDFSelective delivery of anticancer drug molecules to the tumor site enhances local drug dosages, which leads to the death of cancer cells while simultaneously minimizing the negative effects of chemotherapy on other tissues, thereby improving the patient's quality of life. To address this need, we developed reduction-responsive chitosan-based injectable hydrogels via the inverse electron demand Diels-Alder reaction between tetrazine groups of disulfide-based cross-linkers and norbornene groups of chitosan derivatives, which were applied to the controlled delivery of doxorubicin (DOX). The swelling ratio, gelation time (90-500 s), mechanical strength (G'~350-850 Pa), network morphology, and drug-loading efficiency (≥92%) of developed hydrogels were investigated.
View Article and Find Full Text PDFIn this study, diselenide (Se-Se) and disulfide (S-S) redox-responsive core-cross-linked (CCL) micelles were synthesized using poly(ethylene oxide)--poly(furfuryl methacrylate) (PEO--PFMA), and their redox sensitivity was compared. A single electron transfer-living radical polymerization technique was used to prepare PEO--PFMA from FMA monomers and PEO-Br initiators. An anti-cancer drug, doxorubicin (DOX), was incorporated into PFMA hydrophobic parts of the polymeric micelles, which were then cross-linked with maleimide cross-linkers, 1,6-bis(maleimide) hexane, dithiobis(maleimido) ethane and diselenobis(maleimido) ethane via Diels-Alder reaction.
View Article and Find Full Text PDFIn this work, we investigated the effect of the size and the chemical structure of crosslinkers on the properties of hyaluronic acid-based hydrogels prepared via an inverse electron demand Diels-Alder reaction. Hydrogels having loose and dense networks were designed by cross-linkers with and without polyethylene glycol (PEG) spacers of different molecular weights (1000 and 4000 g/mol). The study showed that the properties of hydrogels such as swelling ratios (20-55 times), morphology, stability, mechanical strength (storage modulus in the range 175-858 Pa), and drug loading efficiency (87 % ~ 90 %) were greatly influenced by the addition of PEG and changing its molecular weight in the cross-linker.
View Article and Find Full Text PDFThe physiological instability of nanocarriers, premature drug leakage during blood circulation, and associated severe side effects cause compromised therapeutic efficacy, which have significantly hampered the progress of nanomedicines. The cross-linking of nanocarriers while keeping the effectiveness of their degradation at the targeted site to release the drug has emerged as a potent strategy to overcome these flaws. Herein, we have designed novel (poly(ethylene oxide))--poly(furfuryl methacrylate) ((PEO)--PFMA) miktoarm amphiphilic block copolymers by coupling alkyne-functionalized PEO (PEO-C≡H) and diazide-functionalized poly(furfuryl methacrylate) ((N)-PFMA) via click chemistry.
View Article and Find Full Text PDFIn this work, bioorthogonal and photodegradable hydrogels derived from norbornene (Nb) functionalized hyaluronic acid and a water soluble coumarin-based cross-linker possessing terminal tetrazine (Tz) groups, were developed for NIR-responsive release of doxorubicin (DOX). The inverse electron demand Diels-Alder cross-linking reaction between Nb and Tz functionalities formed the hydrogels at physiological conditions, whereas N gas liberated during the reaction created pores in the hydrogels. The gelation time ranges (about 5-20 min) and the viscoelastic behavior (G' ~ 346-1380 Pa) demonstrated that the resulting hydrogels were injectable and possessed tunable mechanical properties.
View Article and Find Full Text PDFIn this work, novel biocompatible and reduction-responsive soft hydrogels were formulated from norbornene (Nb)-functionalized carboxymethyl cellulose (CMCNb). To cross-link the CMC-Nb via a highly bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction, we employed a water-soluble and reduction-responsive diselenide-based cross-linker possessing two terminal tetrazine (Tz) groups with varying molar concentrations (Nb/Tz molar ratios of 10/10, 10/05, and 10/2.5).
View Article and Find Full Text PDFA novel physically and chemically double-crosslinked hydrogel derived from chitosan oligosaccharide/alginate (COS/Alg) was developed by using norbornene (Nb)-tetrazine (Tz) click reaction for ketoprofen delivery. The properties of the hydrogel were evaluated by rheological, FTIR, TGA, XRD, SEM, swelling and drug release studies. The Nb-Tz chemical cross-linking facilitated outstanding hydrophobic drug loading (44% wt/wt of ketoprofen) and sustained release through a hydrophobic interaction mechanism between the drug and the used polysaccharides.
View Article and Find Full Text PDFOne of the most promising strategies for the controlled release of therapeutic molecules is stimuli-responsive and biodegradable hydrogels developed from natural polymers. However, current strategies to development stimuli-responsive hydrogels lack precise control over drug release profile and use cytotoxic materials during preparation. To address these issues, multi-stimuli responsive hydrogels derived from hyaluronic acid and diselenide based cross-linker were developed for the controlled release of doxorubicin (DOX).
View Article and Find Full Text PDFColitis is a colon mucosal disorder characterized by intestinal damage and inflammation. This current study aimed to evaluate the effect of meroterpenoid-rich ethanoic extract of a brown algae, (MES) on dextran sulfate sodium (DSS)-induced colitis in mice and explore the possible mechanisms. Mice were given 4% DSS in drinking water for 7 days to induce colitis, followed by 3 days of regular water.
View Article and Find Full Text PDFIn this work, novel injectable and reduction-responsive hydrogels were successfully prepared via inverse electron demand Diels-Alder reaction between alginate-norbornene and a water-soluble PEG based disulfide cross-linker. The reduction-responsive cross-linker was designed to contain a PEG chain within two disulfide linkages, and two terminal tetrazine groups. The resulting hydrogels possessed high swelling ratios, porous morphology, excellent drug loading efficiency (~92%), and suitable mechanical properties.
View Article and Find Full Text PDFIn the present study, we developed near-infrared (NIR)-responsive shell-crosslinked (SCL) micelles using the Diels-Alder (DA) click reaction between an amphiphilic copolymer poly(d,l-lactide)--poly((furfuryl methacrylate)--(-acryloylmorpholine)) (PLA--P(FMA--NAM)) and a diselenide-containing crosslinker, bis(maleimidoethyl) 3,3'-diselanediyldipropionoate (BMEDSeDP). The PLA--P(FMA--NAM) copolymer was synthesized by RAFT polymerization of FMA and NAM using a PLA-macro-chain transfer agent (PLA-CTA). The DA reaction between BMEDSeDP and the furfuryl moieties in the copolymeric micelles in water resulted in the formation of SCL micelles.
View Article and Find Full Text PDFA dual pH-/thermo-responsive hydrogel was designed based on a polyelectrolyte complex of polyacrylic acid (PAA) and norbornene-functionalized chitosan (CsNb), which was synergized with chemical crosslinking using bistetrazine-poly(N-isopropyl acrylamide) (bisTz-PNIPAM). The thermo-responsive polymeric crosslinker, bisTz-PNIPAM, was synthesized via reversible addition-fragmentation transfer polymerization of NIPAM. FTIR, XRD, rheological and morphological analyses demonstrated the successful formation of the polyelectrolyte network.
View Article and Find Full Text PDFThe beguiling world of functional polymers is dominated by thermoresponsive polymers with unique structural and molecular attributes. Limited work has been reported on the protein-induced conformational transition of block copolymers; furthermore, the literature lacks a clear understanding of the influence of proteins on the phase behavior of thermoresponsive copolymers. Herein, we have synthesized poly(-isopropylacrylamide)--poly(-vinylcaprolactam) (PNIPAM--PNVCL) by RAFT polymerization using -isopropylacrylamide and -vinylcaprolactam.
View Article and Find Full Text PDFAging is a major risk factor for many chronic diseases, such as cancer, cardiovascular disease, and diabetes. The exact mechanisms underlying the aging process are not fully elucidated. However, a growing body of evidence suggests that several pathways, such as sirtuin, AMP-activated protein kinase, insulin-like growth factor, autophagy, and nuclear factor erythroid 2-related factor 2 play critical roles in regulating aging.
View Article and Find Full Text PDFOwing to their unique topology and physical properties, micelles based on miktoarm amphiphilic star block copolymers play an important role in the biomedical field for drug delivery. Herein, we developed a series of AB-type poly(D,L-lactide-co-glycolide)-b-poly(-acryloyl morpholine) (PLGA-b-PNAM) miktoarm star block copolymers by reversible addition-fragmentation chain-transfer polymerization and ring-opening copolymerization. The resulting miktoarm star polymers were investigated by H NMR spectroscopy and gel permeation chromatography.
View Article and Find Full Text PDFIn this article, a drug delivery system with a near-infrared (NIR) light-responsive feature was successfully prepared using a block copolymer poly(ethylene oxide)--poly(glycidyl methacrylate)-azide (PEO--PGMA-N) and a cross-linker containing a Se-Se bond through "click" chemistry. Doxorubicin (DOX) was loaded into the core-cross-linked (CCL) micelles of the block copolymer along with indocyanine green (ICG) as a generator of reactive oxygen species (ROS). During NIR light exposure, ROS were generated by ICG and attacked the Se-Se bond of the cross-linker, leading to de-crosslinking of the CCL micelles.
View Article and Find Full Text PDF