Publications by authors named "Kwok-kong Tony Mong"

Article Synopsis
  • Helicobacter pylori infects about half of the global population and can cause serious gastric diseases by creating cholesteryl α-glucoside derivatives that disrupt host cell membranes.
  • This study focused on how different acyl chains in these derivatives affect membrane properties and bacterial adhesion in human gastric adenocarcinoma cells, using various methods including confocal microscopy and UPLC-MS/MS for lipid analysis.
  • Results showed that specific cholesteryl derivatives significantly inhibited bacterial adhesion by altering membrane composition, especially after different treatment times with phosphatidylethanolamine (PE).
View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) causes tuberculosis as one major threat to human health, which has been deteriorated owing to the emerging multidrug resistance. Mtb contains a complex lipophilic cell wall structure that is important for bacterial persistence. Among the lipid components, sulfoglycolipids (SGLs), known to induce immune cell responses, are composed of a trehalose core attached with a conserved sulfate group and 1-4 fatty acyl chains in an asymmetric pattern.

View Article and Find Full Text PDF

We report a practical one-pot glycosylation strategy for synthesis of bacterial inner core oligosaccharides that composed of unavailable L-glycero-D-manno and D-glycero-D-manno-heptopyranose components. The glycosylation method features a new orthogonal glycosylation procedure; whereby a phosphate acceptor is coupled with a thioglycosyl donor producing a disaccharide phosphate, which can be engaged in another orthogonal glycosylation procedure to couple with a thioglycosyl acceptor. The phosphate acceptors used in above one-pot procedure are directly prepared from thioglycosyl acceptors via the in-situ phosphorylation.

View Article and Find Full Text PDF

We developed a versatile asymmetric strategy to synthesize different classes of sulfoglycolipids (SGLs) from Mycobacterium tuberculosis. The strategy features the use of asymmetrically protected trehaloses, which were acquired from the glycosylation of TMS α-glucosyl acceptors with benzylidene-protected thioglucosyl donors. The positions of the protecting groups at the donors and acceptors can be fine-tuned to obtain different protecting-group patterns, which is crucial for regioselective acylation and sulfation.

View Article and Find Full Text PDF

We report the isolation and stereochemical determination of the predominant native cholesteryl 6--phosphatidyl α-glucoside (CPG) from via an integrated biological and chemical strategy. The strategy employed (i) the metabolic isolation of a CPG analogue and (ii) the enzymatic degradation of the analogue to obtain the native lactobacillic acid for the stereochemical determination. The absolute stereochemistry of the acid was found to be 11 and 12.

View Article and Find Full Text PDF
Article Synopsis
  • The report details the total synthesis of landomycins Q and R, along with the core component anhydrolandomycinone and its analogue.
  • It highlights an innovative acetate-assisted arylation method for creating the complex B-ring and a one-pot procedure that simplifies overall synthesis steps.
  • Cytotoxicity and antibacterial studies indicate that landomycin R shows promise as an antibacterial agent, particularly against methicillin-resistant strains.
View Article and Find Full Text PDF

Background: During autophagy defense against invading microbes, certain lipid types are indispensable for generating specialized membrane-bound organelles. The lipid composition of autophagosomes remains obscure, as does the issue of how specific lipids and lipid-associated enzymes participate in autophagosome formation and maturation. Helicobacter pylori is auxotrophic for cholesterol and converts cholesterol to cholesteryl glucoside derivatives, including cholesteryl 6'-O-acyl-α-D-glucoside (CAG).

View Article and Find Full Text PDF

We report a one-pot glycosylation strategy for achieving rapid syntheses of heptose (Hep)-containing oligosaccharides. The reported procedure was designed to incorporate an in situ phosphorylation step into an orthogonal one-pot glycosylation. Hep-containing oligosaccharides were assembled directly from building blocks with minimal effort expended on manipulation of protecting and aglycone leaving groups.

View Article and Find Full Text PDF

In this study, we report a new reductive etherification procedure for protection of carbohydrate substrates and its application for one-pot preparation of glycosyl building blocks. The reported procedure features the use of polymethylhydrosiloxane (PMHS) as a sub-stoichiometric reducing agent, which prevents the transilylation side reaction and improves the efficiency of the reductive etherification method. Application of the PMHS reductive etherification procedure for one-pot protecting group manipulation are described.

View Article and Find Full Text PDF

Helicobacter pylori, the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6'-O-acyl-α-D-glucopyranoside (CAG) to promote lipid raft clustering in the host cell membranes. However, how CAG appears in the host to exert the pathogenesis still remains ambiguous.

View Article and Find Full Text PDF

A general strategy for the diverse synthesis of ten disaccharide aminoglycosides, including natural 2-trehalosamine (1), 3-trehalosamine (2), 4-trehalosamine (3), and neotrehalosyl 3,3'-diamine (8) and synthetic aminoglycosides 4-7, 9, and 10, has been developed. The aminoglycoside compounds feature different anomeric configurations and numbers of amino groups. The key step for the synthesis was the glycosylation coupling of a stereodirecting donor with a configuration-stable TMS glycoside acceptor.

View Article and Find Full Text PDF

A general synthetic strategy based on a protecting group-promoted CH arylation method was developed for total syntheses of anhydrolandomycinone (1), tetrangulol (2), and landomycinone (3) from the same set of starting materials.

View Article and Find Full Text PDF

A flexible 1,2-cis α-selective glycosylation strategy for a wide range of glycosyl donors and acceptors has been developed, which is based on an in situ adduct transformation protocol. Based on this strategy, both NFM-derived and iodide covalent adducts can be accessed for glycosylation. Using low temperature NMR spectroscopy, the aforementioned glycosyl adducts were detected.

View Article and Find Full Text PDF

Escherichia coli O157:H7 is a foodborne pathogen. This bacterial strain can generate Shiga-like toxins (SLTs), which can cause serious sickness and even death. Thus, it is important to develop effective and sensitive methods that can be used to rapidly identify the presence of SLTs from complex samples.

View Article and Find Full Text PDF

Nonsymmetrical 1,1'-disaccharides and related derivatives constitute structural components in various glycolipids and natural products. Some of these compounds have been shown to exhibit appealing biological properties. We report a direct yet stereoselective 1,1'-glycosylation strategy for the synthesis of nonsymmetrical 1,1'-disaccharides with diverse configurations and sugar components.

View Article and Find Full Text PDF

Objectives: A Neissaria bacterial pilus sugar, bacillosamine, was synthesized and, for the first time, used as a probe to screen a single-chain variable fragment (scFv).

Results: Four Neisseria, Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria sicca and Neisseria subflava, and two negative controls, Streptococcus pneumoniae and Escherichia coli, were tested through ELISA, immunostaining and gold nanoparticle immunological assay. All results indicated that the selected scFv is feasible for the specific detection of Neisseria species via the recognition of bacillosamine.

View Article and Find Full Text PDF

infects approximately half of the human population and is the main cause of various gastric diseases. This pathogen is auxotrophic for cholesterol, which it converts upon uptake to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl and 6'-phosphatidyl α-glucosides (CAGs and CPGs). Owing to a lack of sensitive analytical methods, it is not known if CAGs and CPGs play distinct physiological roles or how the acyl chain component affects function.

View Article and Find Full Text PDF

A concise synthesis of single components of C2 sulfated oligomannans including trimers, tetramers, and pentamers is reported. The synthesis features the application of the DMF-modulation method for the participatory thiomannoside donors in 1,2-transα-glycosidic bond formation. The obtained oligomannans were fully characterized using (1)H, (13)C, COSY, and HSQC NMR spectroscopy.

View Article and Find Full Text PDF

Foodborne illness outbreaks resulting from contamination of Escherichia coli O157:H7 remain a serious concern in food safety. E. coli O157:H7 can cause bloody diarrhea, hemolytic uremic syndrome, or even death.

View Article and Find Full Text PDF

We reported a remote control glycosylation method using the picoloyl protecting group for 2-deoxy-β-glycosidic bond formation. The method is applicable to various 2-deoxythioglycosyl donors and the utility is illustrated by the synthesis of a deoxytrisaccharide component of landomycins.

View Article and Find Full Text PDF

Small glycodendrimers with α-mannosyl ligands were synthesized by using copper-catalyzed azide-alkyne coupling chemistry and some of these molecules were used as multivalent ligands to study the induction of concanavalin A (Con A) precipitation. The results showed that the monovalent mannose ligand could induce the precipitation of Con A. This unexpected finding initiated a series of studies to characterize the molecular basis of the ligand-lectin interaction.

View Article and Find Full Text PDF

A general strategy for the synthesis of phenylethanoid glycosides (PhG) including echinacoside 1, acteoside 2, calceolarioside-A 3 and calceolarioside-B 4 is reported. The strategy features the application of low substrate concentration glycosylation and N-formyl morpholine modulated glycosylation methods for the construction of 1,2-trans β- and α-glycosidic bonds. The reported strategy does not invoke the use of the participatory acyl protecting function, which is incompatible with the ester function present in target PhG compounds.

View Article and Find Full Text PDF

A practical method for the synthesis of KDO glycal donors was developed. The prepared KDO donors exhibited excellent disastereoselectivity of glycosylation in a CH2Cl2-CH3CN solvent mixture, which was found to be associated with the isopropylidene protection at the C-4 and C-5 hydroxyls. The synthetic use of the KDO donor was demonstrated in the preparation of β-KDO-containing oligosaccharides.

View Article and Find Full Text PDF

The major challenge in carbohydrate synthesis is stereochemical control of glycosidic bond formation. Different glycosylation methods have been developed that are based on the modulation effect of external nucleophiles. This review highlights the development, synthetic application, challenges and outlook of the modulated glycosylation methods.

View Article and Find Full Text PDF

The chemical properties of nucleophile additives were investigated in a modulated glycosylation context. N-Formylmorpholine (NFM) was found to be an effective modulator for glycosylation with less reactive 2-azido-2-deoxythioglucosyl and thiogalactosyl donors.

View Article and Find Full Text PDF