A wastewater treatment plant (WWTP) is an essential part of the urban water cycle, which reduces concentration of pollutants in the river. For monitoring and control of WWTPs, researchers develop different models and systems. This study introduces a new deep learning model for predicting effluent quality parameters (EQPs) of a WWTP.
View Article and Find Full Text PDFRecently, much research has revealed the increasing importance of natural fiber in modern applications. Natural fibers are used in many vital sectors like medicine, aerospace and agriculture. The cause of increasing the application of natural fiber in different fields is its eco-friendly behavior and excellent mechanical properties.
View Article and Find Full Text PDFDue to the dynamic and complexity of leachate percolation within municipal solid waste (MSW), planning and operation of solid waste management systems are challenging for decision-makers. In this regard, data-driven methods can be considered robust approaches to modeling this problem. In this paper, three black-box data-driven models, including artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and support vector regression (SVR), and also three white-box data-driven models, including the M5 model tree (M5MT), classification and regression trees (CART), and group method of data handling (GMDH), were developed for modeling and predicting landfill leachate permeability ([Formula: see text]).
View Article and Find Full Text PDFDisposal of medical waste (MW) must be considered as a vital need to prevent the spread of pandemics during Coronavirus disease of the pandemic in 2019 (COVID-19) outbreak in the globe. In addition, many concerns have been raised due to the significant increase in the generation of MW in recent years. A structured evaluation is required as a framework for the quantifying of potential environmental impacts of the disposal of MW which ultimately leads to the realization of sustainable development goals (SDG).
View Article and Find Full Text PDFDuring the past three decades, harmful algal blooms (HAB) events have been frequently observed in marine waters around many coastal cities in the world including Hong Kong. The increasing occurrence of HAB has caused acute influences and damages on water environment and marine aquaculture with millions of monetary losses. For example, the Tolo Harbour is one of the most affected areas in Hong Kong, where more than 30% HAB occurred.
View Article and Find Full Text PDFWith an increasing demand of horticultural crops, it is critical to examine environmental damages and exergy impacts and evaluate their potential in producing sustainable products of agricultural systems. As such, environmental midpoints of five dominated horticultural products, namely, hazelnut, watermelon, tea, kiwifruit, and citrus, are scrutinized using life cycle assessment approach in Guilan province, Iran. Each crop is considered under a separate scenario and 10 tons of yield is determined as the functional unit.
View Article and Find Full Text PDFThis study aims to employ two artificial intelligence (AI) methods, namely, artificial neural networks (ANNs) and adaptive neuro fuzzy inference system (ANFIS) model, for predicting life cycle environmental impacts and output energy of sugarcane production in planted or ratoon farms. The study is performed in Imam Khomeini Sugarcane Agro-Industrial Company (IKSAIC) in Khuzestan province of Iran. Based on the cradle to grave approach, life cycle assessment (LCA) is employed to evaluate environmental impacts and study environmental impact categories of sugarcane production.
View Article and Find Full Text PDFPrediction of agricultural energy output and environmental impacts play important role in energy management and conservation of environment as it can help us to evaluate agricultural energy efficiency, conduct crops production system commissioning, and detect and diagnose faults of crop production system. Agricultural energy output and environmental impacts can be readily predicted by artificial intelligence (AI), owing to the ease of use and adaptability to seek optimal solutions in a rapid manner as well as the use of historical data to predict future agricultural energy use pattern under constraints. This paper conducts energy output and environmental impact prediction of paddy production in Guilan province, Iran based on two AI methods, artificial neural networks (ANNs), and adaptive neuro fuzzy inference system (ANFIS).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2017
This study explores two ideas to made an improvement on the artificial neural network (ANN)-based models for suspended sediment forecasting in several time steps ahead. In this regard, both observed and forecasted time series are incorporated as input variables of the models when applied for more than one lead time. Secondly, least-square ensemble models employing multiple wavelet-ANN models are developed to increase the performance of the single model.
View Article and Find Full Text PDFAccurate and reliable suspended sediment load (SSL) prediction models are necessary for planning and management of water resource structures. More recently, soft computing techniques have been used in hydrological and environmental modeling. The present paper compared the accuracy of three different soft computing methods, namely, artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), coupled wavelet and neural network (WANN), and conventional sediment rating curve (SRC) approaches for estimating the daily SSL in two gauging stations in the USA.
View Article and Find Full Text PDFHydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics.
View Article and Find Full Text PDFMar Pollut Bull
July 2006
With the development of computing technology, numerical models are often employed to simulate flow and water quality processes in coastal environments. However, the emphasis has conventionally been placed on algorithmic procedures to solve specific problems. These numerical models, being insufficiently user-friendly, lack knowledge transfers in model interpretation.
View Article and Find Full Text PDF