Publications by authors named "Kwok-Wang Hung"

Alzheimer's disease (AD), the most common neurodegenerative disease, has limited treatment options. As such, extensive studies have been conducted to identify novel therapeutic approaches. We previously reported that rhynchophylline (Rhy), a small molecule EphA4 inhibitor, rescues impaired hippocampal synaptic plasticity and cognitive dysfunctions in APP/PS1 mice, an AD transgenic mouse model.

View Article and Find Full Text PDF

Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD), characterized by cognitive decline, has emerged as a disease of synaptic failure. The present study reveals an unanticipated role of erythropoietin-producing hepatocellular A4 (EphA4) in mediating hippocampal synaptic dysfunctions in AD and demonstrates that blockade of the ligand-binding domain of EphA4 reverses synaptic impairment in AD mouse models. Enhanced EphA4 signaling was observed in the hippocampus of amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD, whereas soluble amyloid-β oligomers (Aβ), which contribute to synaptic loss in AD, induced EphA4 activation in rat hippocampal slices.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (Cdk5), a member of the cyclin-dependent kinase family, is critical for regulating neural development and neuronal survival. Dysregulation of Cdk5 is associated with abnormal expression of cell cycle-related proteins during neuronal apoptosis. We have previously found that p35, a Cdk5 activator, interacts with mSds3, an integral component of the histone deacetylase complex in vitro, suggesting a functional role of Cdk5 in gene regulation through modulation of chromatin integrity.

View Article and Find Full Text PDF

Homeostatic plasticity is crucial for maintaining neuronal output by counteracting unrestrained changes in synaptic strength. Chronic elevation of synaptic activity by bicuculline reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs), but the underlying mechanisms of this effect remain unclear. We found that activation of EphA4 resulted in a decrease in synaptic and surface GluR1 and attenuated mEPSC amplitude through a degradation pathway that requires the ubiquitin proteasome system (UPS).

View Article and Find Full Text PDF

EphA4-dependent growth cone collapse requires reorganization of actin cytoskeleton through coordinated activation of Rho family GTPases. Whereas various guanine exchange factors have recently been identified to be involved in EphA4-mediated regulation of Rho GTPases and growth cone collapse, the functional roles of GTPase-activating proteins in the process are largely unknown. Here we report that EphA4 interacts with alpha2-chimaerin through its Src homology 2 domain.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (Cdk5), a serine/threonine kinase that displays kinase activity predominantly in neurons, is activated by two non-cyclin activators, p35 or p39. Here, we report a physical and functional interaction between the Cdk5/p35 complex and mouse Sds3 (mSds3), an essential component of mSin3-histone deacetylase (HDAC) co-repressor complex. mSds3 binds to p35 both in vitro and in vivo, enabling active Cdk5 to phosphorylate mSds3 at serine 228.

View Article and Find Full Text PDF