Publications by authors named "Kwok-Kuen Cheung"

Background: Cigarette smoking is known to affect muscle function and exercise capacity, including muscle fatigue resistance. Most studies showed diminished cross-sectional area and fibre type shifting in slow-twitch muscles such as the soleus, while effects on fast-twitch muscles were seldom reported and the differential responses between muscle types in response to exposure to cigarette smoke (CS) were largely unknown. This study aimed to elucidate the histomorphological, biochemical and transcriptomic changes induced by CS on both slow-twitch and fast-twitch muscles.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related mortality worldwide, primarily driven by genetic mutations. The most common genetic alterations implicated in lung cancer include mutations in , , , , , , , , , , , and . Targeted therapies have been developed to inhibit cancer growth by focusing on these specific genetic mutations.

View Article and Find Full Text PDF

Research on Rab-like protein 1A (RBEL1A) in the past two decades highlighted the oncogenic properties of this gene. Despite the emerging evidence, its importance in cancer biology was underrated. This is the first RBEL1A critical review covering its discovery, biochemistry, physiological functions, and clinical insights.

View Article and Find Full Text PDF

Asparaginase has been traditionally applied for only treating acute lymphoblastic leukemia due to its ability to deplete asparagine. However, its ultimate anticancer potential for treating solid tumors has not yet been unleashed. In this study, we bioengineered Erwinia chrysanthemi asparaginase (ErWT), one of the US Food and Drug Administration-approved types of amino acid depleting enzymes, to achieve double amino acid depletions for treating a solid tumor.

View Article and Find Full Text PDF

Cigarette smoke (CS) is the major risk factor for chronic obstructive pulmonary disease (COPD) and can induce systemic manifestations, such as skeletal muscle derangement. However, inconsistent findings of muscle derangement were reported in previous studies. The aim of the present study was to consolidate the available evidence and assess the impact of CS on muscle derangement in rodents.

View Article and Find Full Text PDF

PcActx peptide, identified from the transcriptome of zoantharian was clustered into the phylogeny of analgesic polypeptides from sea anemone (known as APHC peptides). APHC peptides were considered as inhibitors of transient receptor potential cation channel subfamily V member 1 (TRPV1). TRPV1 is a calcium-permeable channel expressed in epileptic brain areas, serving as a potential target for preventing epileptic seizures.

View Article and Find Full Text PDF

Background And Purpose: Several studies have evaluated the effects of high-intensity aerobic training (HIAT) on pain severity and quality of life (QoL) among women with primary dysmenorrhea. However, to date, no studies have evaluated the effectiveness of HIAT on academic performance or absenteeism or examined the cost-effectiveness of HIAT relative to other treatments in women with primary dysmenorrhea. Furthermore, the mechanisms underlying aerobic exercise-induced analgesia in primary dysmenorrhea remain unclear.

View Article and Find Full Text PDF

The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly.

View Article and Find Full Text PDF

Neurogenesis is the process by which functional new neurons are generated from the neural stem cells (NSCs) or neural progenitor cells (NPCs). Increasing lines of evidence show that neurogenesis impairment is involved in different neurological illnesses, including mood disorders, neurogenerative diseases, and central nervous system (CNS) injuries. Since reversing neurogenesis impairment was found to improve neurological outcomes in the pathological conditions, it is speculated that modulating neurogenesis is a potential therapeutic strategy for neurological diseases.

View Article and Find Full Text PDF

The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations.

View Article and Find Full Text PDF

Reduced exercise capacity is common in people with chronic obstructive pulmonary diseases (COPD) and chronic smokers and is suggested to be related to skeletal muscle dysfunction. Previous studies using human muscle biopsies have shown fiber-type shifting in chronic smokers particularly those with COPD. These results, however, are confounded with aging effects because people with COPD tend to be older.

View Article and Find Full Text PDF

The popular accepted explanation for the pathogenesis of primary dysmenorrhea is elevated levels of uterine prostaglandins. Aetiological studies report that production of prostaglandins is controlled by the sex hormone progesterone, with prostaglandins and progesterone displaying an inverse relationship (i.e.

View Article and Find Full Text PDF

In muscle regeneration, infiltrating myeloid cells, such as macrophages mediate muscle inflammation by releasing key soluble factors. One such factor, insulin-like growth factor 1 (IGF-1), suppresses inflammatory cytokine expression and mediates macrophage polarization to anti-inflammatory phenotype during muscle injury. Previously the IGF-1Ea isoform was shown to be anti-inflammatory.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The root of Panax notoginseng is traditionally used as an anti-hemorrhagic agent to promote blood circulation without causing "congealed" blood. Furthermore, the flower of P. notoginseng is a popular, traditional medicine taken daily for the preventing of hypertension and for reducing blood cholesterol profiles.

View Article and Find Full Text PDF

Key Points: Decreased mechanical loading results in skeletal muscle atrophy. The transient receptor potential canonical type 1 (TRPC1) protein is implicated in this process. Investigation of the regulation of TRPC1 in vivo has rarely been reported.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how Pulsed Electromagnetic Fields (PEMF) affect collagen fiber in diabetic wound healing.
  • 40 male diabetic rats were used in the experiment, with one group receiving PEMF treatment and the other serving as a control, to observe changes over a set period.
  • Results showed that PEMF significantly increased the amount of type I collagen fibers at day 7, linked to a higher presence of myofibroblasts, although no differences were noted in collagen alignment or orientation over time.
View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the optimal electrical stimulation (ES) protocol in attenuating disuse muscle atrophy by influencing satellite cell activity.

Design: This study used a pretest-posttest design. Six ES protocols of different duration (3 hrs day or 2 × 3 hrs day) and frequencies (2, 10, or 20 Hz) were applied on the soleus muscle in mice (n = 8 in each group) that were hindlimb-suspended for 14 days.

View Article and Find Full Text PDF

Although pressure therapy (PT) has been widely used as the first-line treatment for hypertrophic scars (HS), the histopathological changes involved have seldom been studied. This study aimed to examine the longitudinal effect of PT on the histopathological changes in HS. Ten scar samples were selected from six patients with HS after burn and they were given a standardized PT intervention for 3 months while 16 scar samples were obtained on those without PT.

View Article and Find Full Text PDF

Purinergic receptors activated by extracellular nucleotides (adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP)) are well known to exert physiological effects on the cardiovascular system, whether nucleotides participate functionally in embryonic heart development is not clear. The responsiveness of embryonic cardiomyocytes (E) 12 to P2 receptor agonists by measuring Ca(2+) influx did not present response to ATP, but responses to P2 agonists were detected in cardiomyocytes taken from E14 and E18 rats. Photometry revealed that the responses to ATP were concentration-dependent with an EC50 of 1.

View Article and Find Full Text PDF
Article Synopsis
  • Reduced collagen deposition in diabetic wounds slows their recovery, but myofibroblasts aid in closure and collagen synthesis during healing.
  • Pulsed electromagnetic fields (PEMF) treatment was examined for its effects on wound healing in diabetic rats, where it significantly improved wound closure and re-epithelialization by increasing myofibroblast presence.
  • The study found that while PEMF treatment showed benefits in the early stages of wound healing, these effects diminished as the healing process continued, suggesting a potential role of myofibroblasts in enhancing recovery.
View Article and Find Full Text PDF

An evaluation of wound mechanics is crucial in reflecting the wound healing status. The present study examined the biomechanical properties of healing rat skin wounds in vivo and ex vivo. Thirty male Sprague-Dawley rats, each with a 6 mm full-thickness circular punch biopsied wound at both posterior hind limbs were used.

View Article and Find Full Text PDF

Introduction: We assessed the time-dependent changes of transient receptor potential canonical type 1 (TRPC1) and TRPC3 expression and localization associated with muscle atrophy and regrowth in vivo.

Methods: Mice were subjected to hindlimb unloading for 7 or 14 days (7U, 14U) followed by 3, 7, or 14 days of reloading (3R, 7R, 14R).

Results: Soleus muscle mass and tetanic force were reduced significantly at 7U and 14U and recovered by 14R.

View Article and Find Full Text PDF

This study examined the effect of monochromatic infrared energy (MIRE) on diabetic wound healing. Fifteen diabetic rats were given MIRE intervention on their skin wounds located on the dorsum and compared with 15 control diabetic rats. Assessments were conducted for each group at weeks 1, 2 and 4 post wounding (five rats at each time point) by calculating the percentage of wound closures (WCs) and performing histological and immunohistochemical staining on sections of wound tissue.

View Article and Find Full Text PDF

Muscle atrophy caused by disuse is accompanied by adverse physiological and functional consequences. Satellite cells are the primary source of skeletal muscle regeneration. Satellite cell dysfunction, as a result of impaired proliferative potential and/or increased apoptosis, is thought to be one of the causes contributing to the decreased muscle regeneration capacity in atrophy.

View Article and Find Full Text PDF