Publications by authors named "Kwok Feng Chong"

CrO/g-CN photocatalyst was successfully synthesized via the one-pot thermal polycondensation method by mixing different ratios of CrCl.HO and thiourea. Thiourea was used as the precursor for building g-CN.

View Article and Find Full Text PDF

Achieving a high energy density and long-cycle stability in energy storage devices demands competent electrochemical performance, often contingent on the innovative structural design of materials under investigation. This study explores the potential of transition metal selenide (TMSe), known for its remarkable activity, electronic conductivity, and stability in energy storage and conversion applications. The innovation lies in constructing hollow structures of binary metal selenide (CoNi-Se) at the surface of reduced graphene oxide (rGO) arranged in a three-dimensional (3D) morphology (CoNi-Se/rGO).

View Article and Find Full Text PDF

The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance.

View Article and Find Full Text PDF

The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated.

View Article and Find Full Text PDF

Glycopolymer materials have emerged as a significant biopolymer class that has piqued the scientific community's attention due to their potential applications. Recently, they have been found to be a unique synthetic biomaterial; glycopolymer materials have also been used for various applications, including direct therapeutic methods, medical adhesives, drug/gene delivery systems, and biosensor applications. Therefore, for the next stage of biomaterial research, it is essential to understand current breakthroughs in glycopolymer-based materials research.

View Article and Find Full Text PDF

Environmental heavy metal ions (HMIs) accumulate in living organisms and cause various diseases. Metal-organic frameworks (MOFs) have proven to be promising and effective materials for removing heavy metal ions from contaminated water because of their high porosity, remarkable physical and chemical properties, and high specific surface area. MOFs are self-assembling metal ions or clusters with organic linkers.

View Article and Find Full Text PDF

Nanoscience enables researchers to develop new and cost-effective nanomaterials for energy, healthcare, and medical applications. Silver nanoparticles (Ag NPs) are currently increasingly synthesized for their superior physicochemical and electronic properties. Good knowledge of these characteristics allows the development of applications in all sensitive and essential fields in the service of humans and the environment.

View Article and Find Full Text PDF

Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE).

View Article and Find Full Text PDF

(-)-Colchicine, an anti-microtubulin polymerization agent, is a valuable medication and the drug of choice for gout, Behçet's disease and familial Mediterranean fever. It has a narrow therapeutic index due to its high toxicity towards normal cells. Nonetheless, numerous (-)-colchicine derivatives have been synthesized and studied for their structure-activity relationship and preferential toxicity.

View Article and Find Full Text PDF

A magnetic nanographene oxide sorbent as a selective sorbent for the magnetic solid-phase extraction combined with high-performance liquid chromatography and fluorescence detection was developed and proved to be a robust method for zearalenone determination in corn samples. Optimum extraction of zearalenone (20 mg magnetic nanographene oxide sorbent, extraction for 15 min, desorption time of 15 min using 1 mL of 0.5% formic acid in methanol) resulted in low limits of detection (05 mg/L) and quantitation (0.

View Article and Find Full Text PDF

A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb) covalently immobilized on the succinimide functionalized poly(n-butyl acrylate)-graphene [poly(nBA)-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE). The immobilized Hb on the poly(nBA)-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode.

View Article and Find Full Text PDF

Antimitotic colchicine possesses low therapeutic index due to high toxicity effects in non-target cell. However, diverse colchicine analogs have been derivatized as intentions for toxicity reduction and structure-activity relationship (SAR) studying. Hybrid system of colchicine structure with nontoxic biofunctional compounds modified further affords a new entity in chemical structure with enhanced activity and selectivity.

View Article and Find Full Text PDF

Carbon nanospheres derived from a natural source using a green approach were reported. Lablab purpureus seeds were pyrolyzed at different temperatures to produce carbon nanospheres for supercapacitor electrode materials. The synthesized carbon nanospheres were analyzed using SEM, TEM, FTIR, TGA, Raman spectroscopy, BET and XRD.

View Article and Find Full Text PDF

Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h) were achieved.

View Article and Find Full Text PDF

A new optosensor for visual quantitation of nitrite (NO2(-)) ion has been fabricated by physically immobilizing Safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate) [poly(nBA)] microspheres matrix, which was synthesized via facile microemulsion UV lithography technique. Evaluation and optimization of the optical NO2(-) ion sensor was performed with a fiber optic reflectance spectrophotometer. Scanning electron micrograph showed well-shaped and smooth spherical morphology of the poly(nBA) microspheres with a narrow particles size distribution from 0.

View Article and Find Full Text PDF

A whole-cell environmental biosensor was fabricated on a diamond electrode. Unicellular microalgae Chlorella vulgaris was entrapped in the bovine serum albumin (BSA) membrane and immobilized directly onto the surface of a diamond electrode for heavy metal detection. We found that the unique surface properties of diamond reduce the electrode fouling problem commonly encountered with metal electrodes.

View Article and Find Full Text PDF

The optimization of biosensing efficiency on a diamond platform depends on the successful coupling of biomolecules on the surface, and also on effective signal transduction in the biorecognition events. In terms of biofunctionalization of diamond surfaces, surface electrochemical studies of diamond modified with undecylenic acid (UA), with and without headgroup protection, were performed. The direct photochemical coupling method employing UA was found to impart a higher density of carboxylic acid groups on the diamond surface compared to that using trifluoroethyl undecenoate (TFEU) as the protecting group during the coupling process.

View Article and Find Full Text PDF

The biocompatibility of diamond was investigated with a view toward correlating surface chemistry and topography with cellular adhesion and growth. The adhesion properties of normal human dermal fibroblast (NHDF) cells on microcrystalline and ultrananocrystalline diamond (UNCD) surfaces were measured using atomic force microscopy. Cell adhesion forces increased by several times on the hydrogenated diamond surfaces after UV irradiation of the surfaces in air or after functionalization with undecylenic acid.

View Article and Find Full Text PDF