Int J Numer Method Biomed Eng
June 2018
A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples 0-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to 1-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance.
View Article and Find Full Text PDFA tandem of particle-based computational methods is adapted to simulate injury and hemorrhage in the human body. In order to ensure anatomical fidelity, a three-dimensional model of a targeted portion of the human body is reconstructed from a dense sequence of CT scans of an anonymized patient. Skin, bone and muscular tissue are distinguished in the imaging data and assigned with their respective material properties.
View Article and Find Full Text PDFA mechanism for the transport of microscale particles in viscous fluids is demonstrated. The mechanism exploits the trapping of such particles by rotational streaming cells established in the vicinity of an oscillating cylinder, recently analyzed in previous work. The present work explores a strategy of transporting particles between the trapping points established by multiple cylinders undergoing oscillations in sequential intervals.
View Article and Find Full Text PDFThe Lagrangian coherent structures (LCSs) of simple wing cross sections in various low Reynolds number motions are extracted from high-fidelity numerical simulation data and examined in detail. The entrainment process in the wake of a translating ellipse is revealed by studying the relationship between attracting structures in the wake and upstream repelling structures, with the help of blocks of tracer particles. It is shown that a series of slender lobes in the repelling LCS project upstream from the front of the ellipse and "pull" fluid into the wake.
View Article and Find Full Text PDF