Phosphoramidates are common and widespread backbones of a great variety of fine chemicals, pharmaceuticals, additives and natural products. Conventional approaches to their synthesis make use of toxic chlorinated reagents and intermediates, which are sought to be avoided at an industrial scale. Here we report the coupling of phosphites and amines promoted by a Cu[Co(CN)]-based double metal cyanide heterogeneous catalyst using I as additive for the synthesis of phosphoramidates.
View Article and Find Full Text PDFChemical treatment of end-of-life PVC at high temperature often results in the formation of polyacetylene and eventually aromatic char. These insoluble conjugated polymers lead to industrial reactor blockages, and limit the efficiency in recycling chlorinated plastic waste. To address this challenge, a solvent-based tandem dehydrochlorination-hydrogenation process is proposed for the conversion of PVC to a saturated polymer backbone.
View Article and Find Full Text PDFThe oxidative carbonylation of -protected indoles was investigated to directly synthesize indole-3-carboxylic acids. Using Rh(III)-zeolites as heterogeneous catalysts, the single-site Rh-species reach unprecedented activities (>100 turnovers), while the metal is readily recovered after reaction. X-ray absorption spectroscopy (XAS) provided evidence for site-isolation of Rh(III) species on the zeolite.
View Article and Find Full Text PDFElectrophilic amination has emerged as a more environmentally benign approach to construct arene C-N bonds. However, heterogeneous catalysts remain largely unexplored in this area, even though their use could facilitate product purification and catalyst recovery. Here we investigate strategies to heterogenize a Cu(2,2'-bipyridine) catalyst for the amination of arenes lacking a directing group with hydroxylamine--sulfonic acid (HOSA).
View Article and Find Full Text PDFDeep-eutectic solvents (DESs) are often considered to be safe, eco-friendly and non-toxic solvents. Due to these green credentials, they are increasingly being studied for application in metal recycling processes. One example is their use as lixiviants for the recovery of cobalt from lithium cobalt oxide (LiCoO, LCO), which is a common cathode material in lithium-ion batteries.
View Article and Find Full Text PDFThe catalytic conversion of crude glycerol to biopropene was investigated. A bifunctional Ru-ionic liquid system showed a high tolerance for common crude glycerol impurities like water, salts and methanol. After optimizing both dehydration and olefin selectivity, a 82% biopropene yield (94% selectivity) was obtained directly from industrial waste glycerol.
View Article and Find Full Text PDF