Publications by authors named "Kwijun Park"

Context: Adrenal venous sampling is the "gold standard" test in the diagnosis of an aldosterone-producing adenoma (APA) among patients with primary aldosteronism (PA) but is available only in specialized medical centers. Meanwhile, an APA is reported to be generally more sensitive to ACTH than idiopathic hyperaldosteronism.

Objective: The aim was to evaluate the diagnostic accuracy of the ACTH stimulation test in the diagnosis of an APA among those with suspicion of PA.

View Article and Find Full Text PDF

Anti-fibrotic and organ protective effects of brain natriuretic peptide (BNP) have been reported. In this study, effects of BNP on liver fibrosis were examined in the carbon tetrachloride (CCl(4))-induced liver fibrosis model using BNP-transgenic (Tg) and wild-type (WT) mice. Twice-a-week intraperitoneal injections of CCl(4) for 8 weeks resulted in massive liver fibrosis, augmented transforming growth factor (TGF)-beta(1) and type I procollagen alpha(1) chain (Col1a1) mRNA expression, and the hepatic stellate cell (HSC) activation in WT mice, all of which were significantly suppressed in Tg mice.

View Article and Find Full Text PDF

Background: We previously demonstrated that vascular endothelial growth factor receptor type 2 (VEGF-R2)-positive cells induced from mouse embryonic stem (ES) cells can differentiate into both endothelial cells (ECs) and mural cells (MCs) and these vascular cells construct blood vessel structures in vitro. Recently, we have also established a method for the large-scale expansion of ECs and MCs derived from human ES cells. We examined the potential of vascular cells derived from human ES cells to contribute to vascular regeneration and to provide therapeutic benefit for the ischemic brain.

View Article and Find Full Text PDF

Mineralocorticoid receptors (MRs) are classically known to be expressed in the distal collecting duct of the kidney. Recently it was reported that MR is identified in the heart and vasculature. Although MR expression is also found in the brain, it is restricted to the hippocampus and cerebral cortex under normal condition, and the role played by MRs in brain remodeling after cerebral ischemia remains unclear.

View Article and Find Full Text PDF

Background: We demonstrated that mouse embryonic stem (ES) cells-derived vascular endothelial growth factor receptor-2 (VEGF-R2) positive cells could differentiate into both endothelial cells (EC) and mural cells (MC), and termed them as vascular progenitor cells (VPC). Recently, we have established a method to expand monkey and human ES cells-derived VPC with the proper differentiation stage in a large quantity. Here we investigated the therapeutic potential of human VPC-derived EC and MC for vascular regeneration.

View Article and Find Full Text PDF

Peripheral arterial diseases are caused by arterial sclerosis and impaired collateral vessel formation, which are exacerbated by diabetes, often leading to leg amputation. We have reported that an activation of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway accelerated vascular regeneration and blood flow recovery in murine legs, for which ischemia had been induced by a femoral arterial ligation as a model for peripheral arterial diseases. In this study, ip injection of carperitide, a human recombinant atrial natriuretic peptide, accelerated blood flow recovery with increasing capillary density in ischemic legs not only in nondiabetic mice but also in mice kept upon streptozotocin-induced hyperglycemia for 16 wk, which significantly impaired the blood flow recovery compared with nondiabetic mice.

View Article and Find Full Text PDF

Objective: We demonstrated previously that mouse embryonic stem (ES) cell-derived vascular endothelial growth factor receptor-2 (VEGF-R2)-positive cells can differentiate into both vascular endothelial cells and mural cells. This time, we investigated kinetics of differentiation of human ES cells to vascular cells and examined their potential as a source for vascular regeneration.

Methods And Results: Unlike mouse ES cells, undifferentiated human ES cells already expressed VEGF-R2, but after differentiation, a VEGF-R2-positive but tumor rejection antigen 1-60 (TRA1-60)-negative population emerged.

View Article and Find Full Text PDF

Adrenomedullin (AM) is a vasodilating hormone secreted mainly from vascular wall, and its expression is markedly enhanced after stroke. We have revealed that AM promotes not only vasodilation but also vascular regeneration. In this study, we focused on the roles of AM in the ischemic brain and examined its therapeutic potential.

View Article and Find Full Text PDF

We previously reported that adrenomedullin (AM), a vasodilating hormone secreted from blood vessels, promotes proliferation and migration of human umbilical vein endothelial cells (HUVECs). In this study, we examined the ability of AM to promote vascular regeneration. AM increased the phosphorylation of Akt in HUVECs and the effect was inhibited by the AM antagonists and the inhibitors for protein kinase A (PKA) or phosphatidylinositol 3-kinase (PI3K).

View Article and Find Full Text PDF

Background: We demonstrated that vascular endothelial growth factor receptor 2 (VEGF-R2)-positive cells derived from mouse embryonic stem (ES) cells can differentiate into both endothelial cells and mural cells to suffice as vascular progenitor cells (VPCs). Here we examined whether VPCs occur in primate ES cells and investigated the differences in VPC differentiation kinetics between primate and mouse ES cells.

Methods And Results: In contrast to mouse ES cells, undifferentiated monkey ES cells expressed VEGF-R2.

View Article and Find Full Text PDF