Drought stress is a major threat leading to global plant and crop losses in the context of the climate change crisis. Brassinosteroids (BRs) are plant steroid hormones, and the BR signaling mechanism in plant development has been well elucidated. Nevertheless, the specific mechanisms of BR signaling in drought stress are still unclear.
View Article and Find Full Text PDFJasmonate (JA) is an important hormone involved in regulating diverse responses to environmental factors as well as growth and development, and its signalling is influenced by other hormones such as ethylene (ET). However, our understanding of the regulatory relationship between the JA and ET signalling pathways is limited. In this study, we isolated an Arabidopsis JA-hypersensitive mutant, jah3 (jasmonate hypersensitive3)-1.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2022
luciferase (CLuc) is a secreted luminescent protein that reacts with its substrate (Cypridina luciferin) to emit light. CLuc is known to be a thermostable protein and has been used for various research applications, including imaging and high-throughput reporter assays. Previously, we produced a large amount of recombinant CLuc for crystallographic analysis.
View Article and Find Full Text PDFRecognition of microbe-associated molecular patterns (MAMPs) derived from invading pathogens by plant pattern recognition receptors (PRRs) initiates a subset of defense responses known as pattern-triggered immunity (PTI). Transcription factors (TFs) orchestrate the onset of PTI through complex signaling networks. Here, we characterized the function of ERF19, a member of the Arabidopsis thaliana ethylene response factor (ERF) family.
View Article and Find Full Text PDFPlant Biotechnol (Tokyo)
September 2017
Nitrogen limits crop yield, but application of nitrogen fertilizer can cause environmental problems and much fertilizer is lost without being absorbed by plants. Increasing nitrogen use efficiency in plants may help overcome these problems and is, therefore, an important and active subject of agricultural research. Here, we report that the expression of the chimeric repressor for the GATA4 transcription factor () improved tolerance to nitrogen deficiency in .
View Article and Find Full Text PDFIdentification of the factors involved in the regulation of senescence and the analysis of their function are important for both a biological understanding of the senescence mechanism and the improvement of agricultural productivity. In this study, we identified an gene termed " (EPI1) as a possible regulator of senescence in . We found that EPI1 possesses transcriptional repression activity and that the transgenic plants overexpressing and expressing its chimeric repressor, , commonly suppressed the darkness-induced senescence in their excised aerial parts.
View Article and Find Full Text PDFIn this study, we characterized the function of WUSCHEL-RELATED HOMEOBOX 2 (WOX2) using overexpression, CRES-T, and VP16 fusion techniques. Although the function of WOX2 has been described mainly in embryogenesis, it was unclear whether it also plays a role in the post-embryogenic developmental stage. We found that WOX2 has transcriptional repression activity and that either overexpression of or expression of its chimeric repressor causes severe growth defects and other morphological phenotypes by impairing plant organ formation and separation.
View Article and Find Full Text PDFArabidopsis semi-dominant uni-1D shows both constitutive defense responses and diverse morphological defects. In particular, uni-1D homozygote (uni-1D) mutants exhibit severe phenotypes including not only highly up-regulated pathogenesis related-1(PR-1) gene expression, but also lethality in the early stage of true leaf formation after germination. The gene responsible for the mutant encodes a coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR)-type R protein that functions in the recognition of pathogen and the triggering of defense responses.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) cascade is one of the major signaling systems in eukaryotes. External signals are tranduced through three protein kinases, which successively relay phosphorylation to finally activate target genes/proteins. However, few information on targets of MAPK have so far been available.
View Article and Find Full Text PDFInvasion mechanisms of pathogens and counteracting defense mechanisms of plants are highly diverse and perpetually evolving. While most classical studies of plant defense have focused only on defense-specific factor-mediated responses, recent work is beginning to shed light on the involvement of non-stress signal components, especially growth and developmental processes. This shift in focus links plant resistance more closely with growth and development.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPKs) constitute one of the most critical signaling components in plants. A typical example is wound-induced protein kinase (WIPK), which functions during pathogen responses in tobacco plants (Nicotiana tabacum). Searching for direct down-stream components, we previously isolated a novel transcription factor, which was activated upon phosphorylation by WIPK and designated as N.
View Article and Find Full Text PDFNtWIF is a transcription factor activated upon phosphorylation by wound-induced protein kinase (WIPK) in tobacco plants. Transgenic tobacco plants overexpressing NtWIF exhibited constitutive accumulation of transcripts for pathogenesis-related genes, PR-1a and PR-2. Salicylic acid levels were 50-fold higher than those in wild-type plants.
View Article and Find Full Text PDF