Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways.
View Article and Find Full Text PDFIn glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells, the rise of free cytosolic Ca concentration through voltage-gated calcium channels (VGCCs) triggers the exocytosis of insulin-containing granules. Recently, mechanically induced insulin secretion pathways were also reported, which utilize free cytosolic Ca ions as a direct regulator of exocytosis. In this study, we aimed to investigate intracellular Ca responses on the HIT-T15 pancreatic β-cell line upon low-intensity pulsed ultrasound (LIPUS) stimulation and found that ultrasound induces two distinct types of intracellular Ca oscillation, fast-irregular and slow-periodic, from otherwise resting cells.
View Article and Find Full Text PDFIn recent years, ultrasound has gained attention in new biological applications due to its ability to induce specific biological responses at the cellular level. Although the biophysical mechanisms underlying the interaction between ultrasound and cells are not fully understood, many agree on a pivotal role of Ca signaling through mechanotransduction pathways. Because Ca regulates a vast range of downstream cellular processes, a better understanding of how ultrasound influences Ca signaling could lead to new applications for ultrasound.
View Article and Find Full Text PDF