Publications by authors named "Kwasi Mawuenyega"

Objective: In Alzheimer's disease, hyperphosphorylated tau is associated with formation of insoluble paired helical filaments that aggregate as neurofibrillary tau tangles and are associated with neuronal loss and cognitive symptoms. Dual orexin receptor antagonists decrease soluble amyloid-β levels and amyloid plaques in mouse models overexpressing amyloid-β, but have not been reported to affect tau phosphorylation. In this randomized controlled trial, we tested the acute effect of suvorexant, a dual orexin receptor antagonist, on amyloid-β, tau, and phospho-tau.

View Article and Find Full Text PDF

Background And Objectives: To determine the diagnostic accuracy of a plasma Aβ42/Aβ40 assay in classifying amyloid PET status across global research studies using samples collected by multiple centers that utilize different blood collection and processing protocols.

Methods: Plasma samples (n = 465) were obtained from 3 large Alzheimer disease (AD) research cohorts in the United States (n = 182), Australia (n = 183), and Sweden (n = 100). Plasma Aβ42/Aβ40 was measured by a high precision immunoprecipitation mass spectrometry (IPMS) assay and compared to the reference standards of amyloid PET and CSF Aβ42/Aβ40.

View Article and Find Full Text PDF

Introduction: Blood-based assays to measure brain amyloid beta (Aβ) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure Aβ and how they compare among centers and assays.

Methods: Aliquots from 81 plasma samples were distributed to 10 participating centers.

View Article and Find Full Text PDF

gold standard for the ante-mortem assessment of brain β-amyloid pathology is currently β-amyloid positron emission tomography or cerebrospinal fluid measures of β-amyloid or the β-amyloid/β-amyloid ratio. The widespread acceptance of a biomarker classification scheme for the Alzheimer's disease continuum has ignited interest in more affordable and accessible approaches to detect Alzheimer's disease β-amyloid pathology, a process that often slows down the recruitment into, and adds to the cost of, clinical trials. Recently, there has been considerable excitement concerning the value of blood biomarkers.

View Article and Find Full Text PDF

Background: Concentrations of soluble amyloid-β (Aβ) oscillate with the sleep-wake cycle in the interstitial fluid of mice and cerebrospinal fluid (CSF) of humans. Further, the concentration of Aβ in CSF increases during sleep deprivation. Stress and disruption of the circadian clock are additional mechanisms hypothesized to increase CSF Aβ levels.

View Article and Find Full Text PDF

Objective: We examined whether plasma β-amyloid (Aβ)42/Aβ40, as measured by a high-precision assay, accurately diagnosed brain amyloidosis using amyloid PET or CSF p-tau181/Aβ42 as reference standards.

Methods: Using an immunoprecipitation and liquid chromatography-mass spectrometry assay, we measured Aβ42/Aβ40 in plasma and CSF samples from 158 mostly cognitively normal individuals that were collected within 18 months of an amyloid PET scan.

Results: Plasma Aβ42/Aβ40 had a high correspondence with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.

View Article and Find Full Text PDF

This scientific commentary refers to ‘Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer’s brain’, by Brinkmalm (doi:10.1093/brain/awz066).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder with clinical manifestations of progressive memory decline and loss of executive function and language. AD affects an estimated 5.3 million Americans alone and is the most common form of age-related dementia with a rapidly growing prevalence among the aging population-those 65 years of age or older.

View Article and Find Full Text PDF

We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities.

View Article and Find Full Text PDF

Sleep disturbances are associated with future risk of Alzheimer disease. Disrupted sleep increases soluble amyloid β, suggesting a mechanism for sleep disturbances to increase Alzheimer disease risk. We tested this response in humans using indwelling lumbar catheters to serially sample cerebrospinal fluid while participants were sleep-deprived, treated with sodium oxybate, or allowed to sleep normally.

View Article and Find Full Text PDF

Introduction: Cerebrospinal fluid analysis and other measurements of amyloidosis, such as amyloid-binding positron emission tomography studies, are limited by cost and availability. There is a need for a more practical amyloid β (Aβ) biomarker for central nervous system amyloid deposition.

Methods: We adapted our previously reported stable isotope labeling kinetics protocol to analyze the turnover kinetics and concentrations of Aβ38, Aβ40, and Aβ42 in human plasma.

View Article and Find Full Text PDF

Importance: Recent studies found that the concentration of amyloid-β (Aβ) fluctuates with the sleep-wake cycle. Although the amplitude of this day/night pattern attenuates with age and amyloid deposition, to our knowledge, the association of Aβ kinetics (ie, production, turnover, and clearance) with this oscillation has not been studied.

Objective: To determine the association between Aβ kinetics, age, amyloid levels, and the Aβ day/night pattern in humans.

View Article and Find Full Text PDF

The risk of Alzheimer's disease (AD) is highly dependent on apolipoprotein-E (apoE) genotype. The reasons for apoE isoform-selective risk are uncertain; however, both the amounts and structure of human apoE isoforms have been hypothesized to lead to amyloidosis increasing the risk for AD. To address the hypothesis that amounts of apoE isoforms are different in the human CNS, we developed a novel isoform-specific method to accurately quantify apoE isoforms in clinically relevant samples.

View Article and Find Full Text PDF

Background: In Alzheimer's disease, beta-amyloid peptides in the brain aggregate into toxic oligomers and plaques, a process which is associated with neuronal degeneration, memory loss, and cognitive decline. One therapeutic strategy is to decrease the production of potentially toxic beta-amyloid species by the use of inhibitors or modulators of the enzymes that produce beta-amyloid from amyloid precursor protein (APP). The failures of several such drug candidates by lack of effect or undesired side-effects underscore the importance to monitor the drug effects in the brain on a molecular level.

View Article and Find Full Text PDF

Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life.

View Article and Find Full Text PDF

Objective: Age is the single greatest risk factor for Alzheimer's disease (AD), with the incidence doubling every 5 years after age 65. However, our understanding of the mechanistic relationship between increasing age and the risk for AD is currently limited. We therefore sought to determine the relationship between age, amyloidosis, and amyloid-beta (Aβ) kinetics in the central nervous system (CNS) of humans.

View Article and Find Full Text PDF

Objective: The aim of this study was to measure the flux of amyloid-β (Aβ) across the human cerebral capillary bed to determine whether transport into the blood is a significant mechanism of clearance for Aβ produced in the central nervous system (CNS).

Methods: Time-matched blood samples were simultaneously collected from a cerebral vein (including the sigmoid sinus, inferior petrosal sinus, and the internal jugular vein), femoral vein, and radial artery of patients undergoing inferior petrosal sinus sampling. For each plasma sample, Aβ concentration was assessed by 3 assays, and the venous to arterial Aβ concentration ratios were determined.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is hypothesized to be caused by an overproduction or reduced clearance of amyloid-β (Aβ) peptide. Autosomal dominant AD (ADAD) caused by mutations in the presenilin (PSEN) gene have been postulated to result from increased production of Aβ42 compared to Aβ40 in the central nervous system (CNS). This has been demonstrated in rodent models of ADAD but not in human mutation carriers.

View Article and Find Full Text PDF

Abundant evidence suggests a central role for the amyloid-beta (Aβ) peptide in Alzheimer's disease (AD) pathogenesis. Production and clearance of different Aβ isoforms have been established as targets of proposed disease-modifying therapeutic treatments of AD. However, previous studies used multiple sequential purification steps to isolate the isoforms individually and quantitate them based on a common mid-domain peptide.

View Article and Find Full Text PDF

Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition.

View Article and Find Full Text PDF

Amyloid-β (Aβ) producing enzymes are key targets for disease-modifying Alzheimer's disease (AD) therapies since Aβ trafficking is at the core of AD pathogenesis. Development of such drugs might benefit from the identification of markers indicating in vivo drug effects in the central nervous system. We have previously shown that Aβ(1-15) is produced by concerted β-and α-secretase cleavage of amyloid-β protein precursor (AβPP).

View Article and Find Full Text PDF

The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease (AD). The APOE ε4 allele markedly increases AD risk and decreases age of onset, likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. In contrast, the APOE ε2 allele appears to decrease AD risk.

View Article and Find Full Text PDF

Alzheimer's disease is hypothesized to be caused by an imbalance between β-amyloid (Aβ) production and clearance that leads to Aβ accumulation in the central nervous system (CNS). Aβ production and clearance are key targets in the development of disease-modifying therapeutic agents for Alzheimer's disease. However, there has not been direct evidence of altered Aβ production or clearance in Alzheimer's disease.

View Article and Find Full Text PDF