Publications by authors named "Kwansoo Lee"

Due to its ability to achieve geometric complexity at high resolution and low length scales, additive manufacturing (AM) has increasingly been used for fabricating cellular structures (e.g., foams and lattices) for a variety of applications.

View Article and Find Full Text PDF

Synthetic polymers have shown a great impact on every aspect of our life and attained an exponential rise in their production and utilization in the past decades due to their durability, flexibility, moldability, and inexpensive nature. However, the use of natural polymers or development of safe and environment-friendly synthetic bio-based polymers is continuously undergoing for a sustainable future owing to the exhaustion of petroleum-based resources or fossil-based materials, disposal and economical concerns, including government guidelines. In this regard, the development of new sustainable polymers or materials will step up and build a genuinely circular economy by decreasing manufacture or utilization of fossil-based materials as limited reserves.

View Article and Find Full Text PDF

In view of their high theoretical capacities, nickel-rich layered oxides are promising cathode materials for high-energy Li-ion batteries. However, the practical applications of these oxides are hindered by transition metal dissolution, microcracking, and gas/reactive compound formation due to the undesired reactions of residual lithium species. Herein, we show that the interfacial degradation of the LiNiCoMnAlO (NCMA, + + = 0.

View Article and Find Full Text PDF

Due to increased environmental pressures, significant research has focused on finding suitable biodegradable plastics to replace ubiquitous petrochemical-derived polymers. Polyhydroxyalkanoates (PHAs) are a class of polymers that can be synthesized by microorganisms and are biodegradable, making them suitable candidates. The present study looks at the degradation properties of two PHA polymers: polyhydroxybutyrate (PHB) and polyhydroxybutyrate--polyhydroxyvalerate (PHBV; 8 wt.

View Article and Find Full Text PDF

Polyvinylidene fluoride (PVDF) dual-layer hollow fiber membranes were simultaneously fabricated by thermally induced phase separation (TIPS) and non-solvent induced phase separation (NIPS) methods using a triple orifice spinneret (TOS) for water treatment application. The support layer was prepared from a TIPS dope solution, which was composed of PVDF, gamma-butyrolactone (GBL), and N-methyl-2-pyrrolidone (NMP). The coating layer was prepared from a NIPS dope solution, which was composed of PVDF, N,N-dimethylacetamide (DMAc), and polyvinylpyrrolidone (PVP).

View Article and Find Full Text PDF

Rationale: Pan-carpal dissociation is very rare injury and there is little information as to diagnosis, treatment, and prognosis of this injury.

Patient Concerns: A 35-year-man presented to our hospital with severe pain and swelling of the left wrist and forearm after slipping and falling while riding a motorcycle.

Diagnosis: The wrist simple radiographs demonstrated unrecognizable severe fracture-dislocation of the carpal bones concomitant with fractures of the radioulnar shaft.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) have emerged as a promising class of biosynthesizable, biocompatible, and biodegradable polymers to replace petroleum-based plastics for addressing the global plastic pollution problem. Although PHAs offer a wide range of chemical diversity, the structure-property relationships in this class of polymers remain poorly established. In particular, the available experimental data on the mechanical properties is scarce.

View Article and Find Full Text PDF

The waste generated by single-use plastics is often non-recyclable and non-biodegradable, inevitably ending up in our landfills, ecosystems, and food chain. Through the introduction of biodegradable polymers as substitutes for common plastics, we can decrease our impact on the planet. In this study, we evaluate the changes in mechanical and thermal properties of polyhydroxybutyrate-based composites with various additives: Microspheres, carbon fibers or polyethylene glycol (2000, 10,000, and 20,000 MW).

View Article and Find Full Text PDF

The growing need for the implementation of stretchable biosensors in the body has driven rapid prototyping schemes through the direct ink writing of multidimensional functional architectures. Recent approaches employ biocompatible inks that are dispensable through an automated nozzle injection system. However, their application in medical practices remains challenged in reliable recording due to their viscoelastic nature that yields mechanical and electrical hysteresis under periodic large strains.

View Article and Find Full Text PDF

In order to meet the needs of constantly advancing technologies, fabricating materials with improved properties and predictable behavior has become vital. To that end, we have prepared polydimethylsiloxane (PDMS) polymer samples filled with carbon nanofibers (CFs) at 0, 0.5, 1.

View Article and Find Full Text PDF

This research reports on the physical and mechanical effects of various filler materials used in direct ink write (DIW) 3-D printing resins. The data reported herein supports interpretation and discussion provided in the research article "Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based Nanocomposite Elastomers" [1]. The datasheet describes the model structures and the interaction energies between the fillers and the other components by using Molecular Dynamics (MD) simulations.

View Article and Find Full Text PDF

We report a facile method for fabricating polymer hierarchical structures, which are the engineered, ratchet-like microscale structures with nanoscale dimples, for the directional movement of droplets. The fabricated polymer hierarchical structures with no surface modifier show hydrophobic, superhydrophobic, or omniphobic characteristics depending on their intrinsic polymer properties. Further treatment with a surface modifier endows the polymer surfaces with superomniphobicity.

View Article and Find Full Text PDF