GSH is synthesized sequentially by glutamate-cysteine ligase (GCL) and GSH synthase and defends against oxidative stress, which promotes hepatic stellate cell (HSC) activation. Changes in GSH synthesis during HSC activation are poorly characterized. Here, we examined the expression of GSH synthetic enzymes in rat HSC activation and reversion to quiescence.
View Article and Find Full Text PDFMethionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the principal methyl donor, and is encoded by MAT1A and MAT2A in mammals. Normal liver expresses MAT1A, which is silenced in hepatocellular carcinoma. We have shown that hepatoma cells overexpressing MAT1A grew slower, but whether this is also true in vivo remains unknown.
View Article and Find Full Text PDFUnlabelled: Increased mitogen-activated protein kinase (MAPK) activity correlates with a more malignant hepatocellular carcinoma (HCC) phenotype. There is a reciprocal regulation between p44/42 MAPK (extracellular signal-regulated kinase [ERK]1/2) and the dual-specificity MAPK phosphatase MKP-1/DUSP1. ERK phosphorylates DUSP1, facilitating its proteasomal degradation, whereas DUSP1 inhibits ERK activity.
View Article and Find Full Text PDFUnlabelled: We previously showed that hepatic expression of glutathione (GSH) synthetic enzymes and GSH levels fell 2 weeks after bile duct ligation (BDL) in mice. This correlated with a switch in nuclear anti-oxidant response element (ARE) binding activity from nuclear factor erythroid 2-related factor 2 (Nrf2) to c-avian musculoaponeurotic fibrosarcoma (c-Maf)/V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (MafG). Our current aims were to examine whether the switch in ARE binding activity from Nrf2 to Mafs is responsible for decreased expression of GSH synthetic enzymes and the outcome of blocking this switch.
View Article and Find Full Text PDFUnlabelled: Hepatocellular carcinoma (HCC) remains a common cancer worldwide that lacks effective chemoprevention or treatment. Chronic liver disease often leads to impaired hepatic S-adenosylmethionine (SAMe) biosynthesis, and mice with SAMe deficiency develop HCC spontaneously. SAMe is antiapoptotic in normal hepatocytes but proapoptotic in cancerous hepatocytes.
View Article and Find Full Text PDFEndotoxemia participates in the pathogenesis of many liver injuries. Lipopolysaccharide (LPS) was shown to inactivate hepatic methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (SAMe) biosynthesis. SAMe treatment was shown to prevent the LPS-induced increase in tumor necrosis factor-alpha, which may be one of its beneficial effects.
View Article and Find Full Text PDF