The interplay between strong Coulomb interactions and kinetic energy leads to intricate many-body competing ground states owing to quantum fluctuations in 2D electron and hole gases. However, the simultaneous observation of quantum critical phenomena in both electron and hole regimes remains elusive. Here, we utilize anisotropic black phosphorus (BP) to show density-driven metal-insulator transition with a critical conductance ∼/ which highlights the significant role of quantum fluctuations in both hole and electron regimes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Doping is one of the most difficult technological challenges for realizing reliable two-dimensional (2D) material-based semiconductor devices, arising from their ultrathinness. Here, we systematically investigate the impact of different types of nonstoichiometric solid MO (M are W or Mo) dopants obtained by oxidizing transition metal dichalcogenides (TMDs: WSe or MoS) formed on graphene FETs, which results in -type doping along with disorders. From the results obtained in this study, we were able to suggest an analytical technique to optimize the optimal UV-ozone (UVO) treatment to achieve high -type doping concentration in graphene FETs (∼2.
View Article and Find Full Text PDF