Sensors (Basel)
August 2023
Due to the unavailability of GPS indoors, various indoor pedestrian positioning approaches have been designed to estimate the position of the user leveraging sensory data measured from inertial measurement units (IMUs) and wireless signal receivers, such as pedestrian dead reckoning (PDR) and received signal strength (RSS) fingerprinting. This study is similar to the previous study in that it estimates the user position by fusing noisy positional information obtained from the PDR and RSS fingerprinting using the Bayes filter in the indoor pedestrian positioning system. However, this study differs from the previous study in that it uses an enhanced state estimation approach based on the ensemble transform Kalman filter (ETKF), called QETKF, as the Bayes filer for the indoor pedestrian positioning instead of the SKPF proposed in the previous study.
View Article and Find Full Text PDFSensors (Basel)
September 2019
The indoor pedestrian positioning methods are affected by substantial bias and errors because of the use of cheap microelectromechanical systems (MEMS) devices (e.g., gyroscope and accelerometer) and the users' movements.
View Article and Find Full Text PDFThe reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and time-varying radio-frequency (RF) signals used for position determination. To solve this problem, many indoor positioning approaches that integrate the user's motion estimated by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed to achieve higher positioning accuracy in indoor environments.
View Article and Find Full Text PDF