Purpose: To directly compare the radiation and imaging isocenters of a proton treatment machine, we developed and evaluated a real-time radiation isocenter verification system.
Methods: The system consists of a plastic scintillator (PI-200, Mitsubishi Chemical Corporation, Tokyo, Japan), an acrylic phantom, a steel ball on the detachable plate, Raspberry Pi 4 (Raspberry Pi Foundation, London, UK) with camera module, and analysis software implemented through a Python-based graphical user interface (GUI). After kV imaging alignment of the steel ball, the imaging isocenter defined as the position of the steel ball was extracted from the optical image.
Background: Quality assurance (QA) is a prerequisite for safe and accurate pencil-beam proton therapy. Conventional measurement-based patient-specific QA (pQA) can only verify limited aspects of patient treatment and is labor-intensive. Thus, a better method is needed to ensure the integrity of the treatment plan.
View Article and Find Full Text PDFThis study evaluated the toxicity associated with radiation techniques on curative re-irradiation (re-RT) in patients with thoracic recurrence of non-small cell lung cancer (NSCLC). From 2011 to 2019, we retrospectively reviewed the data of 63 patients with salvage re-RT for in-field or marginal recurrence of NSCLC at two independent institutions. Re-RT techniques using X-ray beams and proton beam therapy (PBT) were also included.
View Article and Find Full Text PDFProton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT.
View Article and Find Full Text PDFPurpose: We introduced an output factor (cGy/MU) prediction model for wobbling proton beams over the full range of proton energy, scatterer thickness, and the width of spread-out Bragg peak (SOBP).
Materials And Methods: From December 2015 to August 2020, 1990 wobbling proton fields were used to treat patients, where 1714 fields had a diameter smaller than 11 cm and 276 had a diameter between 11 and 16 cm, which were designated as small and middle wobbling radius cases, respectively. The output factor is defined as the ratio of proton absorbed dose at mid-depth of SOBP to monitor unit (MU).
Purpose: The objective of this work is to determine mechanical, radiation, and imaging isocentres in three-dimensional (3D) coordinates and verifying coincidence of isocentres of passively scattered proton beam using a visual tracking system (VTS) and an in-house developed phantom named the Eagle.
Methods: The Eagle phantom consists of two modules: The first, named Eagle-head, is used for determining 3D mechanical isocentre of gantry rotation. The second, named Eagle-body, is used for determining 3D radiation and imaging isocentres.
Purpose: The purpose of this study was to investigate the feasibility of two-dimensional (2D) dose distribution deconvolution using convolutional neural networks (CNNs) instead of an analytical approach for an in-house scintillation detector that has a detector-interface artifact in the penumbra region.
Methods: Datasets of 2D dose distributions were acquired from a medical linear accelerator of Novalis Tx. The datasets comprise two different sizes of square radiation fields and 13 clinical intensity-modulated radiation treatment (IMRT) plans.
This study aimed to evaluate the feasibility of combining helical tomotherapy (HT) and intensity-modulated proton therapy (IMPT) in treating patients with nasopharynx cancer (NPC). From January 2016 to March 2018, 98 patients received definitive radiation therapy (RT) with concurrent chemotherapy (CCRT). Using simultaneous integrated boost and adaptive re-plan, 3 different dose levels were prescribed: 68.
View Article and Find Full Text PDFPurpose: Scanning proton therapy has dosimetric advantage over passive treatment, but has a large penumbra in low-energy region. This study investigates the penumbra reduction when multi-leaf collimators (MLCs) are used for line scanning proton beams and secondary neutron production from MLCs.
Methods: Scanning beam plans with and without MLC shaping were devised.
Background: The aim of the present study was to verify the dosimetric accuracy of two-dimensional (2D) in vivo rectal dosimetry using an endorectal balloon (ERB) with unfoldable EBT3 films for high-dose-rate (HDR) brachytherapy for cervical cancer. The clinical applicability of the technique was discussed.
Material And Methods: ERB inflation makes the EBT3 films unrolled, whereas its deflation makes them rolled.
In particle radiotherapy, range uncertainty is an important issue that needs to be overcome. Because high-dose conformality can be achieved using a particle beam, a small uncertainty can affect tumor control or cause normal-tissue complications. From this perspective, the treatment planning system (TPS) must be accurate.
View Article and Find Full Text PDFPurpose: Radiation pneumonitis (RP) has been a challenging obstacle in treating stage III lung cancer patients. Beam angle optimization (BAO) technique for Tomotherapy was developed to reduce the normal lung dose for stage III non-small cell lung cancer (NSCLC). Comparative analyses on plan quality by 3 different Intensity-modulated radiation therapy (IMRT) methods with BAO were done.
View Article and Find Full Text PDFProton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility.
View Article and Find Full Text PDFThe aim of this study is to develop a new method to align the patient setup lasers in a radiation therapy treatment room and examine its validity and efficiency. The new laser alignment method is realized by a device composed of both a metallic base plate and a few acrylic transparent plates. Except one, every plate has either a crosshair line (CHL) or a single vertical line that is used for alignment.
View Article and Find Full Text PDFPurpose: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS.
Materials And Methods: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV.