Cellular differentiation is controlled by intricate layers of gene regulation, involving the modulation of gene expression by various transcriptional regulators. Due to the complexity of gene regulation, identifying master regulators across the differentiation trajectory has been a longstanding challenge. To tackle this problem, a computational framework, single-cell Boolean network inference and control (BENEIN), is presented.
View Article and Find Full Text PDFThis article presents attractor-transition control of complex biological networks represented by Boolean networks (BNs) wherein the BN is steered from a prescribed initial attractor toward a desired one. The proposed approach leverages the similarity between attractors and Boolean algebraic properties embedded in the underlying state transition equations. To enhance the clarity of expression regarding stabilization toward the desired attractor, a simple coordinate transformation is performed on the considered BN.
View Article and Find Full Text PDFThe tendency for cell fate to be robust to most perturbations, yet sensitive to certain perturbations raises intriguing questions about the existence of a key path within the underlying molecular network that critically determines distinct cell fates. Reprogramming and trans-differentiation clearly show examples of cell fate change by regulating only a few or even a single molecular switch. However, it is still unknown how to identify such a switch, called a master regulator, and how cell fate is determined by its regulation.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
August 2024
Output stabilizing control of biological systems is of utmost importance in systems biology since key phenotypes of biological networks are often encoded by a small subset of their phenotypic marker nodes. This study addresses the challenge of output stabilizing control for complex biological systems modeled by Boolean networks (BNs). The objective is to identify a set of constant control inputs capable of driving the BN toward a desirable long-term behavior with respect to specified output nodes.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2024
Boolean networks have been widely used in systems biology to study the dynamical characteristics of biological networks such as steady-states or cycles, yet there has been little attention to the dynamic properties of network structures. Here, we systematically reveal the core network structures using a recursive self-composite of the logic update rules. We find that all Boolean update rules exhibit repeated cyclic logic structures, where each converged logic leads to the same states, defined as kernel states.
View Article and Find Full Text PDFNPJ Syst Biol Appl
May 2024
Understanding and manipulating cell fate determination is pivotal in biology. Cell fate is determined by intricate and nonlinear interactions among molecules, making mathematical model-based quantitative analysis indispensable for its elucidation. Nevertheless, obtaining the essential dynamic experimental data for model development has been a significant obstacle.
View Article and Find Full Text PDFInducing apoptosis in cancer cells is a primary goal in anti-cancer therapy, but curing cancer with a single drug is unattainable due to drug resistance. The complex molecular network in cancer cells causes heterogeneous responses to single-target drugs, thereby inducing an adaptive drug response. Here, we showed that targeted drug perturbations can trigger state conflicts between multi-stable motifs within a molecular regulatory network, resulting in heterogeneous drug responses.
View Article and Find Full Text PDFBackground: A central challenge in biology is to discover a principle that determines individual phenotypic differences within a species. The growth rate is particularly important for a unicellular organism, and the growth rate under a certain condition is negatively associated with that of another condition, termed fitness trade-off. Therefore, there should exist a common molecular mechanism that regulates multiple growth rates under various conditions, but most studies so far have focused on discovering those genes associated with growth rates under a specific condition.
View Article and Find Full Text PDFThis study investigated the effects of heat stress on milk production in Korean Holstein cows using large-scale data. Heat stress was assessed using the temperature-humidity index (THI). Weather records (2016 to 2020) were collected from 70 regional weather stations using an installed automated surface observing system (ASOS).
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2023
Accumulated genetic alterations in cancer cells distort cellular stimulus-response (or input-output) relationships, resulting in uncontrolled proliferation. However, the complex molecular interaction network within a cell implicates a possibility of restoring such distorted input-output relationships by rewiring the signal flow through controlling hidden molecular switches. Here, a system framework of analyzing cellular input-output relationships in consideration of various genetic alterations and identifying possible molecular switches that can normalize the distorted relationships based on Boolean network modeling and dynamics analysis is presented.
View Article and Find Full Text PDFThe underlying genetic networks of cells give rise to diverse behaviors known as phenotypes. Control of this cellular phenotypic diversity (CPD) may reveal key targets that govern differentiation during development or drug resistance in cancer. This work establishes an approach to control CPD that encompasses practical constraints, including model limitations, the number of simultaneous control targets, which targets are viable for control, and the granularity of control.
View Article and Find Full Text PDFCancer is caused by the accumulation of genetic alterations and therefore has been historically considered to be irreversible. Intriguingly, several studies have reported that cancer cells can be reversed to be normal cells under certain circumstances. Despite these experimental observations, conceptual and theoretical frameworks that explain these phenomena and enable their exploration in a systematic way are lacking.
View Article and Find Full Text PDFClinical effect of donor-derived natural killer cell infusion (DNKI) after HLA-haploidentical hematopoietic cell transplantation (HCT) was evaluated in high-risk myeloid malignancy in phase 2, randomized trial. Seventy-six evaluable patients (aged 21-70 years) were randomized to receive DNKI (N = 40) or not (N = 36) after haploidentical HCT. For the HCT conditioning, busulfan, fludarabine, and anti-thymocyte globulin were administered.
View Article and Find Full Text PDFUnlabelled: The epithelial-to-mesenchymal transition (EMT) of primary cancer contributes to the acquisition of lethal properties, including metastasis and drug resistance. Blocking or reversing EMT could be an effective strategy to improve cancer treatment. However, it is still unclear how to achieve complete EMT reversal (rEMT), as cancer cells often transition to hybrid EMT states with high metastatic potential.
View Article and Find Full Text PDFMotivation: Cellular behavior is determined by complex non-linear interactions between numerous intracellular molecules that are often represented by Boolean network models. To achieve a desired cellular behavior with minimal intervention, we need to identify optimal control targets that can drive heterogeneous cellular states to the desired phenotypic cellular state with minimal node intervention. Previous attempts to realize such global stabilization were based solely on either network structure information or simple linear dynamics.
View Article and Find Full Text PDFTolaasin, a pore-forming bacterial peptide toxin secreted by , causes brown blotch disease in cultivated mushrooms by forming membrane pores and collapsing the membrane structures. Tolaasin is a lipodepsipeptide, MW 1985, and pore formation by tolaasin molecules is accomplished by hydrophobic interactions and multimerizations. Compounds that inhibit tolaasin toxicity have been isolated from various food additives.
View Article and Find Full Text PDFRecently, FGFR inhibitors have been highlighted as promising targeted drugs due to the high prevalence of FGFR1 amplification in cancer patients. Although various potential biomarkers for FGFR inhibitors have been suggested, their functional effects have been shown to be limited due to the complexity of the cancer signaling network and the heterogenous genomic conditions of patients. To overcome such limitations, we have reconstructed a lung cancer network model by integrating a cell line genomic database and analyzing the model in order to understand the underlying mechanism of heterogeneous drug responses.
View Article and Find Full Text PDFThe response variation to anti-cancer drugs originates from complex intracellular network dynamics of cancer. Such dynamic networks present challenges to determining optimal drug targets and stratifying cancer patients for precision medicine, although several cancer genome studies provided insights into the molecular characteristics of cancer. Here, we introduce a network dynamics-based approach based on attractor landscape analysis to evaluate the therapeutic window of a drug from cancer signaling networks combined with genomic profiles.
View Article and Find Full Text PDFCancer Gene Ther
January 2023
Cancer tissue samples contain cancer cells and non-cancer cells with each biopsied site containing distinct proportions of these populations. Consequently, assigning useful tumor subtypes based on gene expression measurements from clinical samples is challenging. We applied a blind source separation approach to extract cancer cell-intrinsic gene expression patterns within clinical tumor samples of colorectal cancer.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
March 2024
This article investigates robust stabilizing control of biological systems modeled by Boolean networks (BNs). A population of BNs is considered where a majority of BNs have the same BN dynamics, but some BNs are inflicted by mutations damaging particular nodes, leading to perturbed dynamics that prohibit global stabilization to the desired attractor. The proposed control strategy consists of two steps.
View Article and Find Full Text PDFRecent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed.
View Article and Find Full Text PDFAlthough stromal fibroblasts play a critical role in cancer progression, their identities remain unclear as they exhibit high heterogeneity and plasticity. Here, a master transcription factor (mTF) constructing core-regulatory circuitry, PRRX1, which determines the fibroblast lineage with a myofibroblastic phenotype, is identified for the fibroblast subgroup. PRRX1 orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-β signaling by remodeling a super-enhancer landscape.
View Article and Find Full Text PDF