The pursuit of energy-saving materials and technologies has garnered significant attention for their pivotal role in mitigating both energy consumption and carbon emissions. In particular, thermochromic windows in buildings offer energy-saving potential by adjusting the transmittance of solar irradiation in response to temperature changes. Radiative cooling (RC), radiating thermal heat from an object surface to the cold outer space, also offers a potential way for cooling without energy consumption.
View Article and Find Full Text PDFCheckpoint kinase 1 (Chk1) is a key mediator of the DNA damage response that regulates cell cycle progression, DNA damage repair, and DNA replication. Small-molecule Chk1 inhibitors sensitize cancer cells to genotoxic agents and have shown preclinical activity as single agents in cancers characterized by high levels of replication stress. However, the underlying genetic determinants of Chk1-inhibitor sensitivity remain unclear.
View Article and Find Full Text PDFIn the brain, environmental changes, such as neuroinflammation, can induce senescence, characterized by the decreased proliferation of neurons and dendrites and synaptic and vascular damage, resulting in cognitive decline. Senescence promotes neuroinflammatory disorders by senescence-associated secretory phenotypes and reactive oxygen species. In human brain microvascular endothelial cells (HBMVECs), we demonstrate that chronological aging and irradiation increase death-associated protein kinase 3 (DAPK3) expression.
View Article and Find Full Text PDFBackground/aim: The fibroblast growth factor receptor (FGFR) signaling pathway is abnormally activated in human cancers, including breast cancer. Therefore, targeting the FGFR signaling pathway is a potent strategy to treat breast cancer. The purpose of this study was to find drugs that could increase sensitivity to FGFR inhibitor effects in BT-474 breast cancer cells, and to investigate the combined effects and underlying mechanisms of these combinations for BT-474 breast cancer cell survival.
View Article and Find Full Text PDFPrecise prediction of radioresistance is an important factor in the treatment of colorectal cancer (CRC). To discover genes that regulate the radioresistance of CRCs, we analyzed an RNA sequencing dataset of patient-originated samples. Among various candidates, IGFL2-AS1, a long non-coding RNA (lncRNA), exhibited an expression pattern that was well correlated with radioresistance.
View Article and Find Full Text PDFAlthough interest in recycling carbon fibers is rapidly growing, practical applications of recycled carbon fibers (rCFs) are limited owing to their poor wettability and adhesion. Surface modification of CFs was achieved through intense pulsed light (IPL) irradiation, which functionalizes surface of rCFs. Surface energy, chemical composition, morphology, and interfacial shear strength (IFSS) of rCFs before and after IPL irradiation were investigated.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2022
Given our previous finding that certain tumor-suppressing functions of p53 are exerted by the p53/p21 complex, rather than p53 alone, cells may have a system to regulate the p53/p21 interaction. As p53 binds to p21 via its C-terminal domain, which contains acetylable lysine residues, we investigated whether the C-terminal acetylation of p53 influences the p53/p21 interaction. Indeed, the p53/p21 interaction was reduced when various types of cells (HCT116 colon cancer, A549 lung cancer, and MCF7 breast cancer cells) were treated with MS-275, an inhibitor of SIRT1 (a p53 deacetylase), or with SIRT1-targeting small interfering RNAs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2022
The p53 tumor suppressor regulates cell functions either by acting as a transcription factor or by interacting with other proteins. Previously, we reported that the non-transcriptional actions of p53 can be facilitated by the binding of p53 to p21. Herein, we investigated whether p53/p21 interaction influences the transcriptional activity of p53.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM), the most aggressive cancer type that has a poor prognosis, is characterized by enhanced and aberrant angiogenesis. In addition to surgical resection and chemotherapy, radiotherapy is commonly used to treat GBM. However, radiation-induced angiogenesis in GBM remains unexplored.
View Article and Find Full Text PDFMetformin is one of the most effective therapies for treating type 2 diabetes and has been shown to also attenuate aging and age-related disorders. In this study, we explored the relationship between metformin and DNA damage repair in ionizing radiation (IR)-induced damage of human aortic endothelial cells (HAECs). Metformin treatment suppressed IR-induced senescence phenotypes, such as increased senescent-associated β-galactosidase (SA β-gal) activity and decreased tube formation and proliferation.
View Article and Find Full Text PDFNaV(PO) is regarded as one of the promising cathode materials for next-generation sodium ion batteries, but its undesirable electrochemical performances due to inherently low electrical conductivity have limited its direct use for applications. Motivated by the limit, this study employed a porous carbon network to obtain a porous carbon network-NaV(PO) composite by using poly(vinylalcohol) assised sol-gel method. Compared with the typical carbon-coating approach, the formation of a porous carbon network ensured short ion diffusion distances, percolating electrolytes by distributing nanosized NaV(PO) particles in the porous carbon network and suppressing the particle aggregation.
View Article and Find Full Text PDFMyeloid cell leukemia sequence 1 (MCL‑1), an anti‑apoptotic B‑cell lymphoma 2 (BCL‑2) family molecule frequently amplified in various human cancer cells, is known to be critical for cancer cell survival. MCL‑1 has been recognized as a target molecule for cancer treatment. While various agents have emerged as potential MCL‑1 blockers, the present study presented acriflavine (ACF) as a novel MCL‑1 inhibitor in triple‑negative breast cancer (TNBC).
View Article and Find Full Text PDFThe cardiotoxicity of various anticancer therapies, including radiotherapy, can lead to cardiovascular complications. These complications can range from damaging cardiac tissues within the irradiation field to increasing the long-term risks of developing heart failure, coronary artery disease, and myocardial infarction. We analyzed radiation-induced metabolites capable of mediating critical biological processes, such as inflammation, senescence, and apoptosis.
View Article and Find Full Text PDFTargeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci.
View Article and Find Full Text PDFResearch on smart windows is accelerating with a global trend that emphasizes efficient energy use. VO₂ is representativematerial for thermochromic smart windows that can reflect part of sunlight depending on the external environment. We attempted to produce thermochromic thin films by ultrasonic spray coating of VO₂ nano inks.
View Article and Find Full Text PDFA reversibly cross-linkable and transparent polymer featuring stretchability and thermal healability is prepared by introducing Diels-Alder (DA)-reactive moieties into polydimethylsiloxane (PDMS), namely, a healable PDMS (h-PDMS). Inspired by the fact that retro-DA reactions occur even at low temperatures (albeit at a low rate), we maximize the effectiveness of small reactant products, demonstrating that self-healing and self-integration realized by 1-3 min exposure of cured h-PDMS to methyl ethyl ketone (MEK) vapor is more efficient than that achieved by direct sample heating at high temperatures. This technology is first used to uniformly transfer Ag nanowires (Ag NWs) formed on a temporary substrate to the h-PDMS surface, and further MEK vapor treatment allows the transferred NWs to be impregnated below the h-PDMS surface to afford an in-plane strain sensor.
View Article and Find Full Text PDFThis paper presents a wide-angle scanning phased array antenna using high gain pattern reconfigurable antenna (PRA) elements. Using PRA elements is an attractive solution for wide-angle scanning phased array antennas because the scanning range can be divided into several subspaces. To achieve the desired scanning performance, some characteristics of the PRA element such as the number of switching modes, tilt angle, and maximum half-power beamwidth (HPBW) are required.
View Article and Find Full Text PDFGlioblastoma (GBM) is a largely fatal and highly angiogenic malignancy with a median patient survival of just over 1 year with radiotherapy (RT). The effects of RT on GBM remain unclear, although increasing evidence suggests that RT-induced alterations in the brain microenvironment affect the recurrence and aggressiveness of GBM. Glioma stem cells (GSCs) in GBM are resistant to conventional therapies, including RT.
View Article and Find Full Text PDF