Publications by authors named "Kwang-Hoon Kong"

The human palate can discern multiple tastes; however, it predominantly perceives five fundamental flavors: sweetness, saltiness, sourness, bitterness, and umami. Sweetness is primarily mediated through the sweet taste receptor, a membrane-bound heterodimeric structure comprising T1R2-T1R3. However, unraveling the structural and mechanistic intricacies of the sweet taste receptor has proven challenging.

View Article and Find Full Text PDF

Rapid and simple spectrophotometric methods are required to detect various oligosaccharides produced by agar-hydrolysing enzymes. Herein, we present a quantitative agarose-iodine assay for agarase activity determination via the detection of the extent of agarose degradation. The agarose-iodine complex becomes reddish orange upon the addition of Lugol solution, and the enzymatic activity can be detected with ultraviolet-visible spectroscopy at 600 nm.

View Article and Find Full Text PDF

The sweet-tasting protein brazzein offers considerable potential as a functional sweetener with antioxidant, anti-inflammatory, and anti-allergic properties. Here, we optimized a chemically defined medium to produce secretory recombinant brazzein in Kluyveromyces lactis, with applications in mass production. Compositions of defined media were investigated for two phases of fermentation: the first phase for cell growth, and the second for maximum brazzein secretory production.

View Article and Find Full Text PDF

Tyrosinase is a copper-binding enzyme involved in melanin biosynthesis. However, the detailed structure of human tyrosinase has not yet been solved, along with the identification of the key sites responsible for its catalytic activity. We used site-directed mutagenesis to identify the residues critical for the copper binding of human tyrosinase.

View Article and Find Full Text PDF

Obesity is a global chronic disease linked to various diseases. Increased consumption of added sugars, especially in beverages, is a key contributor to the obesity epidemic. It is essential to reduce or replace sugar intake with low-calorie sweeteners.

View Article and Find Full Text PDF

The sweet-tasting protein brazzein is a candidate sugar substitute owing to its sweet, sugar-like taste and good stability. To commercialize brazzein as a sweetener, optimization of fermentation and purification procedure is necessary. Here, we report the expression conditions of brazzein in the yeast and purification method for maximum yield.

View Article and Find Full Text PDF

Sweet-tasting proteins may be useful as low-calorie sugar substitutes in foods, beverages, and medicines. Brazzein is an attractive sweetener because of its high sweetness, sugar-like taste, and good stability at high temperature and wide pH ranges. To investigate the bioactivities of brazzein, the antibacterial, antifungal, antioxidant, anti-inflammatory, and anti-allergic activities were determined in vitro.

View Article and Find Full Text PDF

Agarase catalyzes the hydrolysis of agar, which is primarily used as a medium for microbiology, various food additives, and new biomass materials. In this study, we described the expression of the synthetic gene encoding β-agarase from Agarivorans albus (Aaβ-agarase) in Escherichia coli. The synthetic β-agarase gene was designed based on the biased codons of E.

View Article and Find Full Text PDF

Brazzein is an intensely sweet protein with high stability over a wide range of pH values and temperatures, due to its four disulfide bridges. Recombinant brazzein production through secretory expression in Kluyveromyces lactis is reported, but is inefficient due to incorrect disulfide formation, which is crucial for achieving the final protein structure and stability. Protein disulfide bond formation requires protein disulfide isomerase (PDI) and Ero1p.

View Article and Find Full Text PDF

Background: The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C-terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires further study.

Results: To identify important residues responsible for the sweetness of the protein brazzein, four mutants of the Glu53 residue in the C-terminal region of des-pE1M-brazzein, which lacks the N-terminal pyroglutamate, were constructed using site-directed mutagenesis.

View Article and Find Full Text PDF

Brazzein is an intensely sweet-tasting protein with high water solubility, heat stability, and taste properties resembling those of carbohydrate sweeteners. In the present study, we describe the expression of the synthetic gene encoding brazzein, a sweet protein in the yeast Kluyveromyces lactis. The synthetic brazzein gene was designed based on the biased codons of the yeast, so as to optimize its expression, as well as on the extracellular secretion for expression in an active, soluble form.

View Article and Find Full Text PDF

We have previously identified critical residues important for sweetness of the sweet protein brazzein by site-directed mutagenesis (Yoon, Kong, Jo, & Kong, 2011). In order to elucidate the interaction mechanisms of brazzein with the sweet taste receptor, we made multiple mutations of three residues (His31 in loop 30-33, Glu36 in β-strand III, and Glu41 in loop 40-43). We found that all double mutations (H31R/E36D, H31R/E41A and E36D/E41A) made the molecules sweeter than des-pE1M-brazzein and three single mutants.

View Article and Find Full Text PDF

The gene APE0743 encoding the superoxide dismutase (ApSOD) of a hyperthermophilic archaeon Aeropyrum pernix K1 was cloned and over-expressed as a GST fusion protein at a high level in Escherichia coli. The expressed protein was simply purified by the process of glutathione affinity chromatography and thrombin treatment. The ApSOD was a homodimer of 25 kDa subunits and a cambialistic SOD which was active with either Fe(II) or Mn(II) as a cofactor.

View Article and Find Full Text PDF

The human tyrosinase ectodomain has been expressed in Escherichia coli as a soluble form and purified by immobilized metal affinity column chromatography. The ectodomain exhibited tyrosinase activities toward the hydroxylation and oxidation reactions. Biochemical properties of the ectodomain appeared to be distinct from those of the human tyrosinase, although common features were retained.

View Article and Find Full Text PDF

To gain further insight into herbicide detoxification, we studied the herbicide activity and specificity toward glutathione S-transferases from human and rice. In this study, the genes of the plant specific phi and tau class GST enzymes from Oryza sativa (OsGST) and human pi class GST enzyme (hGSTP1-1) were cloned and expressed in Escherichia coli with the pET and pKK vector systems, respectively. The gene products were purified to homogeneity by GSH Sepharose affinity column chromatography.

View Article and Find Full Text PDF

Expression of hTERT has been recognized an important factor in cellular aging and immortalization. Therefore, to analyze regulatory mechanism of hTERT expression, we investigated the CpG methylation pattern of the hTERT promoter as an epigenetic mechanism and its implication in transcriptional regulation of hTERT using tissues of colorectal carcinoma. As a result, we were able to observe an increased pattern of hTERT expression according to the malignant progression of colorectal carcinoma.

View Article and Find Full Text PDF

A glutathione S-transferase (GST) related to the phi (F) class of enzymes only found in plants has been cloned from the Oryza sativa. The GST cDNA was cloned by PCR using oligonucleotide primers based on the OsGSTF5 (GenBank Accession No. AF309382) sequences.

View Article and Find Full Text PDF

A glutathione S-transferase (GST) from Lactuca sativa was purified to electrophoretic homogeneity approximately 403-fold with a 9.6% activity yield by DEAE-Sephacel and glutathione (GSH)-Sepharose column chromatography. The molecular weight of the enzyme was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure.

View Article and Find Full Text PDF

An alcohol dehydrogenase (ADH) was purified to electrophoretic homogeneity from an extremely thermophilic bacterium, Thermomicrobium roseum. The native enzyme was found to be a homo-dimer of 43-kDa subunits. The pI of the enzyme was determined to be 6.

View Article and Find Full Text PDF