Facile phase transitions and electrical degradation of amorphous oxide semiconductors due to a high thermal budget have significantly limited their dynamic random-access memory (DRAM) applications, which require high thermal stability at temperatures over 600 °C. In this paper, we report an amorphous In-Sn-Ga-O (ITGO) semiconductor fabricated via atomic layer deposition, which exhibits high-temperature (∼700 °C) phase stability with moderate electrical properties. The optimal Sn-rich ITGO composition (In/Sn/Ga = 25:58:17 at.
View Article and Find Full Text PDFDeep learning (DL) models require enormous amounts of data to produce reliable diagnosis results. The superiority of DL models over traditional machine learning (ML) methods in terms of feature extraction, feature dimension reduction, and diagnosis performance has been shown in various studies of fault diagnosis systems. However, data acquisition can sometimes be compromised by sensor issues, resulting in limited data samples.
View Article and Find Full Text PDFAn experimental and numerical study on the ejector pin's mechanics during automatic multistage cold forging (AMSCF) of an automobile wheel nut is conducted. The traditional, decoupled die structural analysis method (DDSM) of analyzing die structures as one of the post-processing functions is criticized, which uses the tractions exerting on the die parts predicted from the forging simulation under the rigid die assumption. To cope with the matter of the DDSM, a multibody treatment scheme (MBTS) is proposed to simulate the AMSCF process, emphasizing the ejector pin's mechanics, using an implicit elastoplastic finite element method.
View Article and Find Full Text PDFAmorphous oxide semiconductors have been widely studied for various applications, including thin-film transistors (TFTs) for display backplanes and semiconductor memories. However, the inherent instability, limited mobility, and complexity of multicomponent oxide semiconductors for achieving high aspect ratios and conformality of cation distribution remain challenging. Indium-zinc oxide (IZO), known for its high mobility, also faces obstacles in instability resulting from high carrier doping density and low ionization energy.
View Article and Find Full Text PDFDetecting parcels accurately and efficiently has always been a challenging task when unloading from trucks onto conveyor belts because of the diverse and complex ways in which parcels are stacked. Conventional methods struggle to quickly and accurately classify the various shapes and surface patterns of unordered parcels. In this paper, we propose a parcel-picking surface detection method based on deep learning and image processing for the efficient unloading of diverse and unordered parcels.
View Article and Find Full Text PDFThis study investigated the tenderizing and flavor-enhancing effects of koji, a fermented grain cultured with a single microorganism, on chicken breasts during curing. Chicken breasts were cured with different ingredients, including 4% (/) curing agent (GC), 5% (/) with rice (FR), with soybean (FS), and with soybean (BS) for 4 h at 4 °C prior to cooking. After the superheated steam procedure, all samples were cooked in a convection oven, and their physicochemical properties were analyzed.
View Article and Find Full Text PDFAnalog in-memory computing synaptic devices are widely studied for efficient implementation of deep learning. However, synaptic devices based on resistive memory have difficulties implementing on-chip training due to the lack of means to control the amount of resistance change and large device variations. To overcome these shortcomings, silicon complementary metal-oxide semiconductor (Si-CMOS) and capacitor-based charge storage synapses are proposed, but it is difficult to obtain sufficient retention time due to Si-CMOS leakage currents, resulting in a deterioration of training accuracy.
View Article and Find Full Text PDFTraditional fatigue fracture theory and practice focus principally on structural design. It is thus too conservative and inappropriate when used to predict the high-cycle fatigue life of dies used for metal forming, especially cold forging. We propose a novel mean stress correction model and diagram to predict the high-cycle fatigue lives of cold forging dies, which focuses on the upper part of the equivalent fatigue strength curve.
View Article and Find Full Text PDFSince artificial intelligence (AI) was introduced into engineering fields, it has made many breakthroughs. Machine learning (ML) algorithms have been very commonly used in structural health monitoring (SHM) systems in the last decade. In this study, a vibration-based early stage of bolt loosening detection and identification technique is proposed using ML algorithms, for a motor fastened with four bolts (M8 × 1.
View Article and Find Full Text PDFMembrane localized transcription factors play essential roles in various plant developmental processes. The XVP/NAC003 protein is a NAC domain transcription factor associated with the plasma membrane and involved in the TDIF-PXY signaling during vascular development. We report here the mechanisms of XVP membrane localization and its nuclear translocation.
View Article and Find Full Text PDFAppl Bionics Biomech
October 2020
The present study emphasized on the optimal design of a motorized prosthetic leg and evaluation of its performance for stair walking. Developed prosthetic leg includes two degrees of freedom on the knee and ankle joint designed using a virtual product development process for better stair walking. The DC motor system was introduced to imitate gait motion in the knee joint, and a spring system was applied at the ankle joint to create torque and flexion angle.
View Article and Find Full Text PDFVascular stem cell maintenance is regulated by a peptide signaling involving Tracheary Element Differentiation Inhibitory Factor (TDIF) and Receptor TDR/PXY (Phloem intercalated with Xylem) and co-receptor BAK1 (BRI1-associated receptor kinase1). The regulatory mechanism of this signaling pathway is largely unknown despite its importance in stem cell maintenance in the vascular meristem. We report that activation of a NAC domain transcription factor XVP leads to precocious Xylem differentiation, disruption of Vascular Patterning, and reduced cell numbers in vascular bundles.
View Article and Find Full Text PDFThe 26S proteasome is an essential protease that selectively eliminates dysfunctional and short-lived regulatory proteins in eukaryotes. To define the composition of this proteolytic machine in plants, we tagged either the core protease (CP) or the regulatory particle (RP) sub-complexes in to enable rapid affinity purification followed by mass spectrometric analysis. Studies on proteasomes enriched from whole seedlings, with or without ATP needed to maintain the holo-proteasome complex, identified all known proteasome subunits but failed to detect isoform preferences, suggesting that does not construct distinct proteasome sub-types.
View Article and Find Full Text PDFIn this work, organic photodiodes (OPDs) based on two newly synthesized p-type dipolar small molecules are reported for application to green-light-selective OPDs. In order to reduce the blue-color absorption induced by the use of C60 as the n-type material in a bulk heterojunction (BHJ), the electron donor:electron acceptor composition ratio is tuned in the BHJ. With this light manipulation approach, the blue-wavelength external quantum efficiency (EQE) is minimized to 18% after reducing the C60 concentration in the center part of the BHJ.
View Article and Find Full Text PDFNAM, ATAF1/2 and CUC2 (NAC) domain transcription factors function as master switches in regulating secondary cell wall (SCW) biosynthesis in Arabidopsis () stems. Despite the importance of these NACs in fiber development, the upstream signal is still elusive. Using a large-scale mutant screening, we identified a dominant activation-tagging mutant, (), showing defective SCW development in stem fibers, similar to that of the () double mutant.
View Article and Find Full Text PDFControlled evaporative self-assembly of semiconducting polymers has mostly been studied on 2-dimensional flat substrates. In this study, we reported capillary-assisted evaporative self-assembly of poly(3-hexylthiophene 2,5-diyl) (P3HT) into 3-D micro-ring patterns through the stick-slip phenomenon within a 3-dimensional cylinder. We deconvoluted the well-known two-step stick-slip phenomenon into three regimes through in situ monitoring of the P3HT self-assembly process using a high-speed camera: pinning and deposition; depinning and slip; and retraction regimes.
View Article and Find Full Text PDFMagnetically active helical soft robots were synthesized to achieve tether-less manipulation of the magnetomotility in order to avoid the on-board weight penalty and the distance restrictions originating from connection lines. Magnetic iron particles were dispersed in elastomeric polymer matrices and pre-cured in a two-dimensional film geometry, followed by post-curing in a three-dimensional (3D) helical geometry. To manipulate movements of the 3D helical soft robots, an external magnetic field was applied by placing a neodymium permanent magnet on a motorized linear translation stage.
View Article and Find Full Text PDFControlling the interactions between cells and viruses is critical for treating infected patients, preventing viral infections, and improving virus-based therapeutics. Chemical methods using small molecules and biological methods using proteins and nucleic acids are employed for achieving this control, albeit with limitations. We found, for the first time, that retroviral DNA integration patterns in the human genome, the result of complicated interactions between cells and viruses, can be engineered by adapting cells to the defined nanotopography of silica bead monolayers.
View Article and Find Full Text PDFThe unique ability of retroviruses to integrate genes into host genomes is of great value for long-term expression in gene therapy, but only when integrations occur at safe genomic sites. To reap the benefit of using retroviruses without severe detrimental effects, we developed several murine leukemia virus (MLV)-based gammaretroviral vectors with safer integration patterns by perturbing the structure of the integrase via insertion of DNA-binding zinc-finger domains (ZFDs) into an internal position of the enzyme. ZFD insertion significantly reduced the inherent, strong MLV integration preference for genomic regions near transcriptional start sites (TSSs), which are the most dangerous spots.
View Article and Find Full Text PDFPlant Cell Physiol
January 2019
The Aurora kinases are serine/threonine kinases with conserved functions in mitotic cell division in eukaryotes. In Arabidopsis, Aurora kinases play important roles in primary meristem maintenance, but their functions in vascular development are still elusive. We report a dominant xdi-d mutant showing the xylem development inhibition (XDI) phenotype.
View Article and Find Full Text PDFPurpose: , the most frequently mutated gene in breast cancer, is more frequently altered in HER2-enriched and basal-like breast cancer. However, no studies have clarified the role of status as a prognostic and predictive marker of triple-negative breast cancer (TNBC).
Materials And Methods: We performed p53 immunohistochemistry (IHC), nCounter mRNA expression assay, and DNA sequencing to determine the relationship between alteration and clinical outcomes of TNBC patients.
Proteotoxic stress, which is generated by the accumulation of unfolded or aberrant proteins due to environmental or cellular perturbations, can be mitigated by several mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis, such as the 26S proteasome. Using RNA-seq analyses combined with chemical inhibitors or mutants that induce proteotoxic stress by impairing 26S proteasome capacity, we defined the transcriptional network that responds to this stress in Arabidopsis thaliana This network includes genes encoding core and assembly factors needed to build the complete 26S particle, alternative proteasome capping factors, enzymes involved in protein ubiquitylation/deubiquitylation and cellular detoxification, protein chaperones, autophagy components, and various transcriptional regulators. Many loci in this proteasome-stress regulon contain a consensus cis-element upstream of the transcription start site, which was previously identified as a binding site for the NAM/ATAF1/CUC2 78 (NAC78) transcription factor.
View Article and Find Full Text PDFIn our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA.
View Article and Find Full Text PDFCold-adapted live attenuated influenza vaccines (CAIVs) have been considered as a safe prophylactic measure to prevent influenza virus infections. The safety of a CAIV depends largely on genetic markers that confer specific attenuation phenotypes. Previous studies with other CAIVs reported that polymerase genes were primarily responsible for the attenuation.
View Article and Find Full Text PDF