Publications by authors named "Kwang-Chul Kwon"

Oral immunotherapies are being developed for various autoimmune diseases and allergies to suppress immune responses in an antigen-specific manner. Previous studies have shown that anti-drug antibody (inhibitor) formation in protein replacement therapy for the inherited bleeding disorder hemophilia can be prevented by repeated oral delivery of coagulation factor antigens bioencapsulated in transplastomic lettuce cells. Here, we find that this approach substantially reduces antibody development against factor VIII in hemophilia A mice treated with adeno-associated viral gene transfer.

View Article and Find Full Text PDF

Current approaches for oral health care rely on procedures that are unaffordable to impoverished populations, whereas aerosolized droplets in the dental clinic and poor oral hygiene may contribute to spread of several infectious diseases including COVID-19, requiring new solutions for dental biofilm/plaque treatment at home. Plant cells have been used to produce monoclonal antibodies or antimicrobial peptides for topical applications to decrease colonization of pathogenic microbes on dental surface. Therefore, we investigated an affordable method for dental biofilm disruption by expressing lipase, dextranase or mutanase in plant cells via the chloroplast genome.

View Article and Find Full Text PDF

Current antibiotics have limited action mode, which makes it difficult for the antibiotics dealing with the emergence of bacteria resisting the existing antibiotics. As a need for new bacteriolytic agents alternative to the antibiotics, AMPs have long been considered substitutes for the antibiotics. Cecropin B was expressed in a fusion form to six-histidine and SUMO tags in Escherichia coli.

View Article and Find Full Text PDF

Background: Despite the growing demand for antimicrobial peptides (AMPs) for clinical use as an alternative approach against antibiotic-resistant bacteria, the manufacture of AMPs relies on expensive, small-scale chemical methods. The small ubiquitin-related modifier (SUMO) tag is industrially practical for increasing the yield of recombinant proteins by increasing solubility and preventing degradation in expression systems.

Results: A new vector system, pKSEC1, was designed to produce AMPs, which can work in prokaryotic systems such as Escherichia coli and plant chloroplasts.

View Article and Find Full Text PDF

Recombinant proteins produced by biological systems such as bacteria, yeasts, mammalian and insect cell cultures are widely used for clinical or industrial purposes. Most therapeutic protein drugs require purification, cold chain, and injection, which make them prohibitively expensive and hinders their widespread use. Here, we describe a new economical oral vaccination platform using algae and evaluated its potential for the delivery of recombinant drugs using GFP expressed in the chloroplast of algal cells.

View Article and Find Full Text PDF

Inhibitor formation is a serious complication of factor VIII (FVIII) replacement therapy for the X-linked bleeding disorder haemophilia A and occurs in 20%-30% of patients. No prophylactic tolerance protocol currently exists. Although we reported oral tolerance induction using FVIII domains expressed in tobacco chloroplasts, significant challenges in clinical advancement include expression of the full-length CTB-FVIII sequence to cover the entire patient population, regardless of individual CD4 T-cell epitope responses.

View Article and Find Full Text PDF

Autoantigen-specific immunological tolerance represents a central objective for prevention of type 1 diabetes (T1D). Previous studies demonstrated mucosal antigen administration results in expansion of Foxp3 and LAP regulatory T cells (Tregs), suggesting oral delivery of self-antigens might represent an effective means for modulating autoimmune disease. Early preclinical experiments using the non-obese diabetic (NOD) mouse model reported mucosal administration of T1D-related autoantigens [proinsulin or glutamic acid decarboxylase 65 (GAD)] delayed T1D onset, but published data are conflicting regarding dose, treatment duration, requirement for combinatorial agents, and extent of efficacy.

View Article and Find Full Text PDF

Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.

View Article and Find Full Text PDF

Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall.

View Article and Find Full Text PDF

Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine.

View Article and Find Full Text PDF

Hyperactivity of the renin-angiotensin system (RAS) resulting in elevated Angiotensin II (Ang II) contributes to all stages of inflammatory responses including ocular inflammation. The discovery of angiotensin-converting enzyme 2 (ACE2) has established a protective axis of RAS involving ACE2/Ang-(1-7)/Mas that counteracts the proinflammatory and hypertrophic effects of the deleterious ACE/AngII/AT1R axis. Here we investigated the hypothesis that enhancing the systemic and local activity of the protective axis of the RAS by oral delivery of ACE2 and Ang-(1-7) bioencapsulated in plant cells would confer protection against ocular inflammation.

View Article and Find Full Text PDF

Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin-angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature.

View Article and Find Full Text PDF

Chloroplasts are the site of photosynthesis and the biosynthesis of essential metabolites, including amino acids, fatty acids, and secondary metabolites. It is known that many seedling-lethal mutants are impaired in chloroplast function or development, indicating the development of functional chloroplast is essential for plant growth and development. Here, we isolated a novel transfer DNA insertion mutant, dubbed sel1 (for seedling lethal1), that exhibited a pigment-defective and seedling-lethal phenotype with a disrupted pentatricopeptide repeat (PPR) gene.

View Article and Find Full Text PDF

Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated.

View Article and Find Full Text PDF

Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge.

View Article and Find Full Text PDF

Glucagon-like peptide (GLP-1) increases insulin secretion but is rapidly degraded (half-life: 2 min in circulation). GLP-1 analogue, exenatide (Byetta) has a longer half-life (3.3-4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life.

View Article and Find Full Text PDF

Early seedling development in plants depends on the biogenesis of chloroplasts from proplastids, accompanied by the formation of thylakoid membranes. An Arabidopsis thaliana gene, AtTerC, whose gene product shares sequence similarity with bacterial tellurite resistance C (TerC), is shown to be involved in a critical step required for the normal organization of prothylakoids and transition into mature thylakoid stacks. The AtTerC gene encodes an integral membrane protein, which contains eight putative transmembrane helices, localized in the thylakoid of the chloroplast, as shown by localization of an AtTerC-GFP fusion product in protoplasts and by immunoblot analysis of subfractions of chloroplasts.

View Article and Find Full Text PDF