Publications by authors named "Kwang-Chul Chung"

Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development.

View Article and Find Full Text PDF

Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease (NDD) characterized by the loss of dopaminergic neurons in the substantia nigra. Similar to other NDDs, the buildup of toxic protein aggregates in PD leads to progressive neuronal loss, culminating in neurodegeneration. Accumulating evidence indicates that alterations in subcellular organelles, particularly the endoplasmic reticulum (ER), are critically involved in pathological neurodegenerative events in NDDs, including PD.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a degenerative disorder of the central nervous system that affects 1% of the population over the age of 60. Although aging is one of the main risk factors for PD, the pathogenic mechanism of this disease remains unclear. Mutations in the F-box-only protein 7 (FBXO7) gene have been previously found to cause early onset autosomal recessive familial PD.

View Article and Find Full Text PDF

Among the five members of the dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) family, the cellular functions of DYRK3 have not been fully elucidated. Some studies have indicated limited physiological roles and substrates of DYRK3, including promotion of glioblastoma, requirement in influenza virus replication, and coupling of stress granule condensation with mammalian target of rapamycin complex 1 signaling. Here, we demonstrate that serum deprivation causes a decrease in intracellular DYRK3 levels via the proteolytic autophagy pathway, as well as the suppression of DYRK3 gene expression.

View Article and Find Full Text PDF

Apoptosis-inducing factor (AIF) is a mitochondrion-localized flavoprotein with NADH oxidase activity. AIF normally acts as an oxidoreductase to catalyze the transfer of electrons between molecules, but it can also kill cells when exposed to certain stimuli. For example, intact AIF is cleaved upon exposure to DNA-damaging agents such as etoposide, and truncated AIF (tAIF) is released from the mitochondria to the cytoplasm and translocated to the nucleus where it induces apoptosis.

View Article and Find Full Text PDF

Precise control of the two major proteolysis systems [i.e. ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP)] is important for proper cell function.

View Article and Find Full Text PDF

PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase that phosphorylates several substrates and exerts neuroprotective effects against stress-induced apoptotic cell death. Mutations in PINK1 have been linked to autosomal recessive forms of Parkinson's disease (PD). Mitophagy is a type of autophagy that selectively promotes mitochondrial turnover and prevents the accumulation of dysfunctional mitochondria to maintain cellular homeostasis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the progressive loss of midbrain dopamine neurons in the substantia nigra. Mutations in the F-box only protein 7 gene (Fbxo7) have been reported to cause an autosomal recessive form of early-onset familial PD. FBXO7 is a part of the SKP1-Cullin1-F-box (SCF) E3 ubiquitin ligase complex, which mediates ubiquitination of numerous substrates.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD.

View Article and Find Full Text PDF

Down syndrome (DS) is mainly caused by an extra copy of chromosome 21 (trisomy 21), and patients display a variety of developmental symptoms, including characteristic facial features, physical growth delay, intellectual disability, and neurodegeneration (i.e., Alzheimer's disease; AD).

View Article and Find Full Text PDF

The formation of Lewy bodies (LBs), intracellular filamentous inclusions, is one of the hallmarks of Parkinson's disease (PD). α-Synuclein is the main component of LBs and its abnormal accumulation contributes to the pathogenesis of PD. Direct phosphorylation of α-synuclein at multiple Ser/Tyr residues is known to induce its aggregation, consequently promoting LB formation.

View Article and Find Full Text PDF

Mutations in the phosphatase and tensin homologue-induced putative kinase 1 (PINK1) gene have been linked to an early-onset autosomal recessive form of familial Parkinson's disease (PD). PINK1, a mitochondrial serine/threonine-protein kinase, plays an important role in clearing defective mitochondria by mitophagy - the selective removal of mitochondria through autophagy. Evidence suggests that alteration of the PINK1 pathway contributes to the pathogenesis of PD, but the mechanisms by which the PINK1 pathway regulates mitochondrial quality control through mitophagy remain unclear.

View Article and Find Full Text PDF

Mitochondria is essential to generate metabolic energy in eukaryotic cells as well as to regulate calcium buffering, cell signaling, the production of reactive oxygen species (ROS), and apoptosis. They mainly produce most of the cellular energy derived from the breakdown of carbohydrates and fatty acids, which is consequently converted to ATP via oxidative phosphorylation. Mitochondria are also distinctive among the cytoplasmic organelles in that they contain their own DNA, which encodes limited number of mitochondrial proteins, tRNAs, and rRNAs.

View Article and Find Full Text PDF

The ubiquitin-proteasome system (UPS) and autophagy are two major degradative pathways of proteins in eukaryotic cells. As about 30% of newly synthesized proteins are known to be misfolded under normal cell conditions, the precise and timely operation of the UPS and autophagy to remove them as well as their tightly controlled regulation, is so important for proper cell function and survival. In the UPS, target proteins are labeled by small proteins called ubiquitin, which are then transported to the proteasome complex for degradation.

View Article and Find Full Text PDF

Gintonin, a ginseng-derived glycolipoprotein isolated from ginseng, has been shown to be neuroprotective in several neurological disorders such as Alzheimer's disease models and depressive-like behaviors. In this study, we sought to investigate the potential protective mechanisms of gintonin in an in vivo MPTP and in vitro MPP-mediated Parkinson's disease (PD) model. We hypothesized that activation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1, potential therapeutic targets for neurodegeneration) with gintonin could abrogate PD-associated neurotoxicity by modulating the accumulation of α-synuclein, neuroinflammation, and apoptotic cell death in an MPTP/MPP models of PD.

View Article and Find Full Text PDF

The carboxyl terminus of Hsp70-interacting protein (CHIP) acts as a ubiquitin E3 ligase and a link between the chaperones Hsp70/90 and the proteasome system, playing a vital role in maintaining protein homeostasis. CHIP regulates a number of proteins involved in a myriad of physiological and pathological processes, but the underlying mechanism of action via posttranslational modification has not been extensively explored. In this study, we investigated a novel modulatory mode of CHIP and its effect on CHIP enzymatic activity.

View Article and Find Full Text PDF

Mutations in the gene for the serine/threonine protein kinase () are the second most frequent cause of autosomal recessive Parkinson's disease (PD). Via its kinase activity, PINK1 regulates neuronal cell survival and mitochondrial quality control. Numerous reports have revealed that PINK1 has diverse and physiologically significant functions, and therefore its activity should be tightly regulated.

View Article and Find Full Text PDF

Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins.

View Article and Find Full Text PDF

The proto-oncogene c-Myc has a pivotal function in growth control, differentiation, and apoptosis and is frequently affected in human cancer, including breast cancer. Ubiquitin-specific protease 22 (USP22), a member of the USP family of deubiquitinating enzymes (DUBs), mediates deubiquitination of target proteins, including histone H2B and H2A, telomeric repeat binding factor 1, and cyclin B1. USP22 is also a component of the mammalian SAGA transcriptional co-activating complex.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by slow, progressive degeneration of dopaminergic neurons in the substantia nigra. The cause of neuronal death in PD is largely unknown, but several genetic loci, including leucine-rich repeat kinase 2 (LRRK2), have been identified. LRRK2 has guanosine triphosphatase (GTPase) and kinase activities, and mutations in LRRK2 are the major cause of autosomal-dominant familial PD.

View Article and Find Full Text PDF

17β-estradiol is a potent sex hormone synthesized primarily by gonads in females and males that regulates development and function of the reproductive system. Recent studies show that 17β-estradiol is locally synthesized in nonreproductive tissues and regulates a myriad of events, including local inflammatory responses. In this study, we report that mesenteric lymph nodes (mLNs) and Peyer's patches (Pps) are novel sites of de novo synthesis of 17β-estradiol.

View Article and Find Full Text PDF