Garnet-type LiLaZrO (LLZO) Li-ion solid electrolytes are promising candidates for safe, next-generation solid-state batteries. In this study, we synthesize Ga-doped LLZO (Ga-LLZO) electrolytes using a microwave-assisted solvothermal method followed by low-temperature heat treatment. The nanostructured precursor (<50 nm) produced by the microwave-assisted solvothermal process has a high surface energy, facilitating the reaction for preparing garnet-type Ga-LLZO powders (<800 nm) within a short time (<5 h) at a low calcination temperature (<700 °C).
View Article and Find Full Text PDFApplication of Si anodes is hindered by severe capacity fading due to pulverization of Si particles during the large volume changes of Si during charge/discharge and repeated formation of the solid-electrolyte interphase. To address these issues, considerable efforts have been devoted to the development of Si composites with conductive carbons (Si/C composites). However, Si/C composites with high C content inevitably show low volumetric capacity because of low electrode density.
View Article and Find Full Text PDFHerein, we report the in-situ synthesis of amorphous GeSe/CNT composite via defective-carbon-mediated chemical bonding for ultrastable Na-ion storage. Structural defects in CNTs play a crucial role in the chemical bonding and bonding strength in GeSe/CNTs composites. Specifically, the bonding strength tends to increase with increasing defect concentrations of CNTs.
View Article and Find Full Text PDFIon and electron transportation determine the electrochemical performance of anodes in metal-ion batteries. This study demonstrates the advantage of charge transfer over mass transport in ensuring ultrastable electrochemical performance. Additionally, charge transfer governs the quality, composition, and morphology of a solid-electrolyte interphase (SEI) film.
View Article and Find Full Text PDFHerein, a Si/reduced graphene oxide (rGO)/C microsphere composite is reported, wherein sucrose-derived carbon binds Si nanoparticles (NPs) and rGO to act as a carbon anchor and links neighboring rGO sheets to reinforce the composite structure. In this structurally reinforced Si/rGO/C composite, the electron conduction pathways between rGO and Si NPs were maintained even under large volume changes during repeated charge-discharge processes. Consequently, the Si/rGO/C composite anode exhibited an initial discharge capacity of 1209 mAh g and superior cyclability (92 % retention at 100 cycles), initial coulombic efficiency of 80.
View Article and Find Full Text PDFGraphene is extensively investigated for various energy storage systems. However, the very low density (<0.01 g cm ) of graphene nanosheets has hindered its further applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
We report the fabrication and catalytic performance evaluation of highly active and stable nickel (Ni)-based structured catalysts for ammonia dehydrogenation with nearly complete conversion using nonprecious metal catalysts. Low-temperature chemical alloying (LTCA) followed by selective aluminum (Al) dealloying was utilized to synthesize foam-type structured catalysts ready for implementation in commercial-scale catalytic reactors. The crystalline phases of Ni-Al alloy (NiAl, NiAl, or both) in the near-surface layer were controlled by tuning the alloying time.
View Article and Find Full Text PDFHerein, triethoxysilane-derived SiOx is used as a robust adhesive anchor to bind Si nanoparticles (NPs) and carbon nanotubes (CNTs) to prepare a structurally reinforced Si/CNT microsphere composite. The chemical reaction between the silanol groups of triethoxysilane with the hydroxyl groups on the Si surface and acid-treated CNTs induce strong chemical bonds between the Si NPs and CNTs and among neighboring CNTs, facilitating electron-conduction pathways and structural integrity of the composite, even under severe stress/strain. Thus, the structurally reinforced Si/CNT/SiOx microsphere composite exhibits superior cyclability: ∼88% of its initial capacity of 1112 mA h g-1 is retained after 100 cycles at 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
All-solid-state thin-film batteries have been actively investigated as a power source for various microdevices. However, insufficient research has been conducted on thin-film encapsulation, which is an essential element of these batteries as solid electrolytes and Li anodes are vulnerable to moisture in the atmosphere. In this study, a hybrid thin-film encapsulation structure of hybrid SiO/SiNO/-SiN:H/Parylene is suggested and investigated.
View Article and Find Full Text PDFRecently, K-ion batteries (KIBs) have attracted attention for potential applications in next-generation energy storage devices principally on the account of their abundancy and lower cost. Herein, for the first time, we report an anatase TiO-derived Magnéli phase TiO as a novel anode material for KIBs. We incorporate pristine carbon nanotube (CNT) on the TiO host materials due to the low electronic conductivity of the host materials.
View Article and Find Full Text PDFIn this study, we synthesize two layered and amorphous structures of germanium phosphide (GeP) and compare their electrochemical performances to better understand the role of layered, crystalline structures and their ability to control large volume expansions. We compare the results obtained with those of previous, conventional viewpoints addressing the effectiveness of amorphous phases in traditional anodes (Si, Ge, and Sn) to hinder electrode pulverization. By means of both comprehensive experimental characterizations and density functional theory calculations, we demonstrate that layered, crystalline GeP in a hybrid structure with multiwalled carbon nanotubes exhibits exceptionally good transport of electrons and electrolyte ions and tolerance to extensive volume changes and provides abundant reaction sites relative to an amorphous structure, resulting in a superior solid-electrolyte interphase layer and unprecedented initial Coulombic efficiencies in both Li-ion and Na-ion batteries.
View Article and Find Full Text PDFAlthough many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors.
View Article and Find Full Text PDFIn this proof of concept study on the synthesis of ionic liquid (IL)-derived multimodal porous carbon using ionic clusters of different sizes as porogens, the carbonization behaviors of binary IL mixtures of 1-ethyl-3-methylimidazolium dicyanamide (EMIM-dca) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TfN) were systematically investigated to demonstrate the formation of multimodal porous carbons with hierarchical structures originating from the ionic cluster porogens. The multimodal porous structures of the resulting IL-derived porous carbons were characterized based on the quenched solid density functional theory, and the role of the ionic clusters as porogens is discussed. From the viewpoint of green and sustainable chemistry, the IL-based synthesis using ionic clusters as porogens is a simple, effective, and sustainable technique for synthesizing multimodal porous carbons with hierarchical structures.
View Article and Find Full Text PDFHerringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1H]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 μm in length and 100 nm in diameter, with a highly graphitic structure.
View Article and Find Full Text PDFLiFeO/carbon nanotube (LFO/CNT) composites composed of sub-micron sized LFO and a nanocarbon with high electrical conductivity were successfully synthesized for the use as lithium ion predoping source in lithium ion cells. The phase of LFO in the composite was found to be very sensitive to the synthesis conditions, such as the heat treatment temperature, type of lithium salt, and physical state of the precursors (powder or pellet), due to the carbothermic reduction of FeO by CNTs during high temperature solid state reaction. Under optimized synthesis conditions, LFO/CNT composites could be synthesized without the formation of impurities.
View Article and Find Full Text PDFIn this study, graphene-selenium hybrid microballs (G-SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G-SeHMs thus prepared is investigated for use as cathode material in applications of lithium-selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g(-1) at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.
View Article and Find Full Text PDFMicrosized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.
View Article and Find Full Text PDFTo resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures.
View Article and Find Full Text PDFLiFePO4 thin film cathodes are deposited on various transparent conducting oxide thin films on glass, which are used as cathode current collectors. The XRD patterns show that the thin films have the phase of LiFePO4 with an ordered olivine structure indexed to the orthorhombic Pmna space group. LiFePO4 thin film deposited on various TCO glass substrates exhibits transmittance of about 53%.
View Article and Find Full Text PDFOne-dimensional, hydrous ruthenium oxide nanotubes (RuO2·1.84H2O) have been successfully achieved using a template-free, microwave-hydrothermal process. These were found to be amorphous in nature and have a large specific surface area of 250 m(2)·g(-1), producing a specific and volumetric capacitance of 511 F·g(-1) and 531 F·cm(-3), respectively, at a discharging current density of 0.
View Article and Find Full Text PDFA two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2) g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability.
View Article and Find Full Text PDFA layer-by-layer (LBL) structure composed of Co3O4 nanoplates and capillary-like three-dimensional (3D) multiwall carbon nanotube (MWCNT) nets was developed as an anode with simultaneous high-rate and long-term cycling performance in a lithium-ion battery. As the current density was increased to 50 A g(-1), the LBL structure exhibited excellent long-term cycling and rate performance. Thus, the Co3O4 nanoplates were in good electrical contact with the capillary-like 3D MWCNT nets under mechanically severe strain during long-term, high-rate cyclic operation.
View Article and Find Full Text PDFThermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e.
View Article and Find Full Text PDFWe have conducted extensive theoretical and experimental investigations to unravel the origin of the electrochemical properties of hybrid Mg(2+)/Li(+) rechargeable batteries at the atomistic and macroscopic levels. By revealing the thermodynamics of Mg(2+) and Li(+) co-insertion into the Mo6S8 cathode host using density functional theory calculations, we show that there is a threshold Li(+) activity for the pristine Mo6S8 cathode to prefer lithiation instead of magnesiation. By precisely controlling the insertion chemistry using a dual-salt electrolyte, we have enabled ultrafast discharge of our battery by achieving 93.
View Article and Find Full Text PDF