Publications by authors named "Kwang Taeg Rim"

The epitaxially grown alkane layers on graphene are prepared by a simple drop-casting method and greatly reduce the environmentally driven doping and charge impurities in graphene. Multiscale simulation studies show that this enhancement of charge homogeneity in graphene originates from the lifting of graphene from the SiO surface toward the well-ordered and rigid alkane self-assembled layers.

View Article and Find Full Text PDF

Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2.

View Article and Find Full Text PDF

We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant.

View Article and Find Full Text PDF

The reduced surface of a natural Hematite single crystal α-Fe(2)O(3)(0001) sample has multiple surface domains with different terminations, Fe(2)O(3)(0001), FeO(111), and Fe(3)O(4)(111). The adsorption of water on this surface was investigated via Scanning Tunneling Microscopy (STM) and first-principle theoretical simulations. Water species are observed only on the Fe-terminated Fe(3)O(4)(111) surface at temperatures up to 235 K.

View Article and Find Full Text PDF

In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice.

View Article and Find Full Text PDF

We describe scanning tunneling microscopy and X-ray photoelectron spectroscopy studies of graphene films produced by sonication-assisted dispersion. Defects in these samples are not randomly distributed, and the graphene films exhibit a "patchwork" structure where unperturbed graphene areas are adjacent to heavily functionalized ones. Adjacent graphene layers are likely in poor mechanical contact due to adventitious species trapped between the carbon sheets of the sample.

View Article and Find Full Text PDF

We have grown well-ordered graphene adlayers on the lattice-matched Co(0001) surface. Low-temperature scanning tunneling microscopy measurements demonstrate an on-top registry of the carbon atoms with respect to the Co(0001) surface. The tunneling conductance spectrum shows that the electronic structure is substantially altered from that of isolated graphene, implying a strong coupling between graphene and cobalt states.

View Article and Find Full Text PDF

The demand for better understanding of the mechanism of soot formation is driven by the negative environmental and health impact brought about by the burning of fossil fuels. While soot particles accumulate most of their mass from surface reactions, the mechanism for surface growth has so far been characterized primarily by measurements of the kinetics. Here we provide atomic-scale scanning tunneling microscope images of carbon growth by chemistry similar to that of importance in soot formation.

View Article and Find Full Text PDF

We present scanning tunneling microscopy (STM) images of single-layer graphene crystals examined under ultrahigh vacuum conditions. The samples, with lateral dimensions on the micrometer scale, were prepared on a silicon dioxide surface by direct exfoliation of crystalline graphite. The single-layer films were identified by using Raman spectroscopy.

View Article and Find Full Text PDF