High-density SnO and SiO thin films were deposited via atomic layer deposition (ALD) at low temperatures (100 °C) using tetrakis(dimethylamino)tin(IV) (TDMASn) and di-isopropylaminosilane (DIPAS) as precursors and hydrogen peroxide (HO) and O plasma as reactants, respectively. The thin-film encapsulation (TFE) properties of SnO and SiO were demonstrated with thickness dependence measurements of the water vapor transmission rate (WVTR) evaluated at 50 °C and 90% relative humidity, and different TFE performance tendencies were observed between thermal and plasma ALD SnO. The film density, crystallinity, and pinholes formed in the SnO film appeared to be closely related to the diffusion barrier properties of the film.
View Article and Find Full Text PDFReceptor for advanced glycation end products (RAGE) is known to be involved in the transportation of amyloid β (Aβ) peptides and causes the accumulation of Aβ in the brain. Moreover, recent studies suggest that the interactions between RAGE and Aβ peptides may be the culprit behind Alzheimer's disease (AD). Inhibitors of the RAGE-Aβ interactions would not only prevent the accumulation of toxic Aβ in the brain, and but also block the progress of AD, therefore, have the potential to provide a 'disease-modifying therapy'.
View Article and Find Full Text PDFA series of carbonate analogues of 5'-halogenated RTX have been investigated in order to examine the effect of the carbonate group as a linker and the role of halogens in the reversal of activity from agonism to antagonism for rat and human TRPV1 heterologously expressed in Chinese hamster ovary cells. The carbonate analogues showed similar activities to the corresponding RTX derivatives in rat TRPV1 but lower potency in human TRPV1. 5-Halogenation converted the agonists to partial agonists or full antagonists and the extent of antagonism reflected the order of I>Br>Cl>F, with a somewhat greater extent of antagonism for the derivatives of the 4-amino RTX surrogates compared to the corresponding derivatives of RTX itself.
View Article and Find Full Text PDFA series of 5'-halogenated resiniferatoxin analogs have been investigated in order to examine the effect of halogenation in the A-region on their binding and the functional pattern of agonism/antagonism for rat TRPV1 heterologously expressed in Chinese hamster ovary cells. Halogenation at the 5-position in the A-region of RTX and of 4-amino RTX shifted the agonism of parent compounds toward antagonism. The extent of antagonism was greater as the size of the halogen increased (I > Br > Cl > F) while the binding affinities were similar, as previously observed for our potent agonists.
View Article and Find Full Text PDFAs an extension of our analysis of the effect of halogenation on thiourea TRPV1 agonists, we have now modified selected 4-hydroxy(or 4-amino)-3-methoxyphenyl acetamide TRPV1 agonists by 5- or 6-halogenation on the aromatic A-region and evaluated them for potency for TRPV1 binding and regulation and for their pattern of agonism/antagonism (efficacy). Halogenation shifted the functional activity at TRPV1 toward antagonism with a greater extent of antagonism as the size of the halogen increased (I>Br>Cl), as previously observed for the thiourea series. The extent of antagonism was greater for halogenation at the 5-position than at the 6-position, in contrast to SAR for the thiourea series.
View Article and Find Full Text PDF