Publications by authors named "Kwang Jo Lee"

Linear optical multiports are widely used in photonic quantum information processing. Naturally, these devices are directionally-biased since photons always propagate from the input ports toward the output ports. Recently, the concept of directionally-unbiased linear optical multiports was proposed.

View Article and Find Full Text PDF

Reference-frame-independent quantum key distribution (RFI-QKD) provides a practical way to generate secret keys between two remote parties without sharing common reference frames. On the other hand, measurement-device-independent QKD (MDI-QKD) offers a high level of security, as it is immune to all quantum hacking attempts to measurement devices. The combination of these two QKD protocols, i.

View Article and Find Full Text PDF

We report the extended phase-matching (EPM) properties of two kinds of periodically poled potassium niobate (KNbO or KN) crystals (i.e., periodic 180°- and 90°-domain structures) that are highly useful for the generation of polarization-entangled photon pairs in the mid-infrared (IR) spectral region.

View Article and Find Full Text PDF

Freeform mirrors can be readily fabricated by a single point diamond turning (SPDT) machine. However, this machining process often leaves mid-frequency errors (MFEs) that generate undesirable diffraction effects and stray light. In this work, we propose a novel thin electroless nickel plating procedure to remove MFE on freeform surfaces.

View Article and Find Full Text PDF

We experimentally demonstrate a novel cosine apodization technique for dual-resonance all-fiber acoustic-optic tunable filter. The technique is based on a hybrid control of input acoustic polarization state and circumferential fiber twist. We will show that intrinsic sidelobe spectra occurring between dual filtering bands are successfully suppressed through our approach, which will be also theoretically confirmed via our analytical and numerical studies.

View Article and Find Full Text PDF

Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section.

View Article and Find Full Text PDF

We propose and demonstrate novel band-rejection filtering scheme based on lossy torsional acousto-optic (AO) coupling in a single polarization fiber. Simulation results show that the polarization insensitive notch depth of -30 dB is achievable for a 2-m-long fiber in the state-of-the-art fiber manufacturing technology. More efficient band-rejection in excess of -44 dB could be also feasible in practical fiber length.

View Article and Find Full Text PDF

We propose, numerically analyze and experimentally demonstrate a novel refractive index sensor specialized for low index sensing. The device is based on a directional coupler architecture implemented in a single microstructured polymer optical fiber incorporating two waveguides within it: a single-mode core and a satellite waveguide consisting of a hollow high-index ring. This hollow channel is filled with fluid and the refractive index of the fluid is detected through changes to the wavelength at which resonant coupling occurs between the two waveguides.

View Article and Find Full Text PDF

Background: Understanding what causes changes in the flux of free fatty acids (FFA) is important to elucidate the etiology of metabolic syndrome. The first aim of this study was to test whether or not hormones and the autonomic nervous system influence blood FFA levels. A secondary aim was to test by means of a multiple group path analysis whether the consumption of fermented red ginseng (FRG; Panax ginseng) would influence those causal relationships.

View Article and Find Full Text PDF

Objectives: The cortico-limbic hypothalamic-pituitary-adrenal axis has emerged as an important area for the cause and treatment of depression. The primary aim of this study was to test the hypothesis that hormones, energy sources, and minerals have a causal relationship with depression. The secondary aim was to test whether consumption of fermented red ginseng (FRG) would influence that causal relationship.

View Article and Find Full Text PDF

Although diagnostic criteria for metabolic syndrome (MtS) vary among various health professionals and organizations, blood glucose dysregulation and insulin resistance are common to all definitions. Red ginseng is beneficial for glucose regulation and insulin sensitivity but the mechanism is not yet elucidated. Ginsenosides Rh1 and Rg3 act as ligands of the estrogen receptor, and Rh2 and compound K act as ligands of the glucocorticoid receptors, which may influence the diabetes markers.

View Article and Find Full Text PDF

We propose and experimentally demonstrate phase-regenerative wavelength conversion in periodically poled lithium niobate waveguides, using either: a single-stage implementation based on a simultaneous combination of two cascaded second-order nonlinear effects in a single periodically poled lithium niobate waveguide, or a two-stage implementation where two separate devices are used in sequence to give rise to the same nonlinear effects. The phase regeneration properties of the proposed wavelength conversion schemes are also investigated.

View Article and Find Full Text PDF

We report a systematic and comparative study of the acceptance bandwidths of two cascaded quadratic nonlinear processes in periodically poled lithium niobate waveguides, namely cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) and cascaded sum-frequency generation and difference-frequency generation (cSFG/DFG). We first theoretically and experimentally study the acceptance bandwidths of both the individual second-harmonic generation (SHG) and sum-frequency generation (SFG) processes in the continuous wave (CW) and pulsed-pump regimes. Our results show that the SHG bandwidth is approximately half that of the SFG process in the CW regime, whereas the SHG acceptance bandwidth can approach the CW SFG bandwidth limit when pulsed-pump is used.

View Article and Find Full Text PDF

We propose and demonstrate a novel method for the elimination of arbitrary frequency chirp from short optical pulses. The technique is based on the combination of two cascaded second-order nonlinearities in two individual periodically poled lithium niobate waveguides. The proposed scheme operates independently of the spectral phase characteristics of the input pulse, producing a near-transform-limited output.

View Article and Find Full Text PDF

We propose and demonstrate error-free conversion of a 40 Gbit/s optical time division multiplexed signal to 4 x 10 Gbit/s wavelength division multiplexed channels based on cascaded second harmonic and difference frequency generation in a periodically poled lithium niobate waveguide. The technique relies on the generation of spectrally (and temporally) flat linearly chirped pulses which are then optically switched with short data pulses in the nonlinear waveguide. Error-free operation was obtained for all channels with a power penalty below 2dB.

View Article and Find Full Text PDF

We propose two techniques to suppress intrinsic sidelobe spectra in all-fiber acousto-optic tunable filter using torsional acoustic wave. The techniques are based on either double-pass filter configuration or axial tailoring of mode coupling strength along an acousto-optic interaction region in a highly birefringent optical fiber. The sidelobe peak in the filter spectrum is experimentally suppressed from -8.

View Article and Find Full Text PDF

We theoretically and experimentally analyze unintentional intensity modulation phenomena in two types of all-fiber acousto-optic tunable filters utilizing flexural and torsional acoustic waves. Output filter signal at a resonant wavelength shows time-varying oscillations with even- and odd-order harmonics of applied acoustic frequency, which are explained by two factors of static mode coupling and acoustic back reflection. The magnitudes of static coupling and acoustic reflection in our devices are estimated from the measured first and second harmonic modulation powers.

View Article and Find Full Text PDF

We propose and demonstrate phase-sensitive amplification based on cascaded second harmonic generation and difference frequency generation within a periodically poled lithium niobate waveguide. Excellent agreement between our numerical simulations and proof-of-principle experiments using a 3-cm waveguide device operating at wavelengths around 1550 nm is obtained. Our experiments confirm the validity and practicality of the approach and illustrate the broad gain bandwidths achievable.

View Article and Find Full Text PDF

We show that an all-fiber acousto-optic tunable filter based on polarization mode coupling using torsional acoustic wave is immune to the fiber bend and physical contact in the acousto-optic interaction region. We also propose and demonstrate a novel strain-free and size-reduced tunable filter with a 4-m-long fiber acousto-optic interaction region looped into a 5- cm-diameter coil.

View Article and Find Full Text PDF

We report the axial strain dependence of two types of all-fiber acousto-optic tunable filters based on flexural and torsional acoustic waves. Experimental observation of the resonant wavelength shift under applied axial strain could be explained by theoretical consideration of the combination of acoustic and optical effects. We discuss the possibility of suppressing the strain effect in the filters, or conversely, the possibility of using the strain dependence for wavelength tuning or strain sensors.

View Article and Find Full Text PDF

We demonstrate and analyze the acousto-optic coupling between two optical polarization modes of the LP(01) mode propagating in a highly birefringent photonic crystal fiber. The coupling is realized based on wavelength selective acousto-optic coupling by traveling torsional acoustic wave in an all-fiber tunable polarization filter configuration. The dispersion properties of the torsional acoustic wave in the photonic crystal fiber and the influence of axial non-uniformity in the modal birefringence on the filter transmission are discussed in detail.

View Article and Find Full Text PDF

We demonstrate an all-fiber tunable polarization filter with high coupling efficiency based on acousto-optic coupling between two optical polarization modes of the LP(01) mode propagating in a highly birefringent single mode optical fiber. An over-coupling between the two polarization modes is realized over the wavelength range from 1530 nm to 1610 nm using traveling torsional acoustic wave. The measured 3-dB optical bandwidth of the filter was 4.

View Article and Find Full Text PDF

We demonstrate an all-fiber acousto-optic tunable bandpass filter exhibiting narrow optical bandwidth and negligible polarization dependence by employing a novel ultraviolet (UV)-induced core-mode blocker written in a high numerical aperture (NA) fiber. It was demonstrated that the device had the measured 3-dB optical bandwidth of 0.65 nm, the polarization-dependent center-wavelength splitting of 0.

View Article and Find Full Text PDF