Publications by authors named "Kwang Hyun Song"

This study aimed to evaluate the mold-enclosed shear bond strength (ME-SBS) of zirconia to veneering porcelain with different surface treatments. Colored or uncolored zirconia coupons were either highly polished or airborne-particle abraded. The specimens were divided into groups with/without application of liner.

View Article and Find Full Text PDF

2.5 MV electronic portal imaging, available on Varian TrueBeam machines, was characterized using various phantoms in this study. Its low-contrast detectability, spatial resolution, and contrast-to-noise ratio (CNR) were compared with those of conventional 6 MV and kV planar imaging.

View Article and Find Full Text PDF

Purpose: We aimed to determine the time, dose, and volume responses in a mouse pulmonary injury model following ablative dose focal irradiation (ADFIR) in order to better understand normal lung injury.

Methods And Materials: ADFIR was administered to the left lung of mice using a small animal micro-irradiator. Histopathological evaluation and micro-computed tomography (micro-CT) analyses were performed at 1, 2, 6, and 12 weeks after irradiation.

View Article and Find Full Text PDF

Introduction: Stereotactic ablative radiotherapy is a newly emerging radiotherapy treatment method that, compared with conventionally fractionated radiation therapy (CFRT), allows an ablative dose of radiation to be delivered to a confined area around a tumor. The aim of the present study was to investigate the changes of various cytokines that may be involved in ablative radiation-induced lung injury in vitro and in vivo.

Methods: In the in vivo study, ablative-dose radiation was delivered to a small volume of the left lung of C3H/HeJCr mice using a small-animal irradiator.

View Article and Find Full Text PDF

Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs).

View Article and Find Full Text PDF

Purpose: To noninvasively map sentinel lymph nodes (SLNs) and lymphatic vessels in rats in vivo by using dual-modality nonionizing imaging-volumetric spectroscopic photoacoustic imaging, which measures optical absorption, and planar fluorescence imaging, which measures fluorescent emission-of indocyanine green (ICG).

Materials And Methods: Institutional animal care and use committee approval was obtained. Healthy Sprague-Dawley rats weighing 250-420 g (age range, 60-120 days) were imaged by using volumetric photoacoustic imaging (n = 5) and planar fluorescence imaging (n = 3) before and after injection of 1 mmol/L ICG.

View Article and Find Full Text PDF

This paper presents a method for measuring the optical absorption cross-sections (σ(a)) of Au-Ag nanocages and Au nanorods. The method is based on photoacoustic (PA) imaging, where the detected signal is directly proportional to the absorption coefficient (μ(a)) of the nanostructure. For each type of nanostructure, we firstly obtained μ(a) from the PA signal by benchmarking against a linear calibration curve (PA signal vs.

View Article and Find Full Text PDF

Sentinel lymph node biopsy (SLNB), a less invasive alternative to axillary lymph node dissection (ALND), has become the standard of care for patients with clinically node-negative breast cancer. In SLNB, lymphatic mapping with radio-labeled sulfur colloid and/or blue dye helps identify the sentinel lymph node (SLN), which is most likely to contain metastatic breast cancer. Even though SLNB, using both methylene blue and radioactive tracers, has a high identification rate, it still relies on an invasive surgical procedure, with associated morbidity.

View Article and Find Full Text PDF

We have succeeded in implementing ring-shaped light illumination ultrasound-modulated optical tomography (UOT) in reflection mode. The system used intense acoustic bursts and a charge-coupled device (CCD) camera-based speckle contrast detection method. In addition, the implementation allows placing the tissue sample below (not within) an acoustic coupling water tank and scanning the tissue without moving the sample.

View Article and Find Full Text PDF

Sentinel lymph node (SLN) biopsy has increasingly become important in axillary staging of breast cancer patients since SLN biopsy alleviates the postoperative complications of previously practiced axillary lymph node dissections. Nevertheless, the procedures of SLN biopsy using blue dye and radioactive substance are still intraoperative, and the latter methods are also ionizing. In this pilot study, we have proposed noninvasive in vivo spectroscopic photoacoustic (PA) SLN mapping using gold nanorods as lymph node tracers in a rat model.

View Article and Find Full Text PDF

This work demonstrated the use of Au nanocages as a new class of lymph node tracers for noninvasive photoacoustic (PA) imaging of a sentinel lymph node (SLN). Current SLN mapping methods based on blue dye and/or nanometer-sized radioactive colloid injection are intraoperative due to the need for visual detection of the blue dye and low spatial resolution of Geiger counters in detecting radioactive colloids. Compared to the current methods, PA mapping based on Au nanocages shows a number of attractive features: noninvasiveness, strong optical absorption in the near-infrared region (for deep penetration), and the accumulation of Au nanocages with a higher concentration than the initial solution for the injection.

View Article and Find Full Text PDF

Sentinel lymph node biopsy (SLNB) has become the standard method of axillary staging for patients with breast cancer and clinically negative axillae. Even though SLNB using both methylene blue and radioactive tracers has a high identification rate, it still relies on an invasive surgical procedure with associated morbidity. Axillary ultrasound has emerged as a diagnostic tool to evaluate the axilla, but it can only assess morphology and cannot specifically identify sentinel lymph nodes (SLNs).

View Article and Find Full Text PDF

The internal organs of rats and rabbits were clearly imaged noninvasively using a deeply penetrating reflection-mode photoacoustic imaging system. This imaging system had previously been found to provide an imaging depth limit of approximately 38 mm. In the thoracic cavity, major blood vessels connecting to the heart were imaged, and the right atrium was imaged as deeply as approximately 8 mm.

View Article and Find Full Text PDF

We apply ultrasound-modulated optical tomography (UOT) to image ex-vivo methylene-blue-dyed sentinel lymph nodes embedded in 3.2-cm-thick chicken breast tissues. The UOT system is implemented for the first time using ring-shaped light illumination, intense acoustic bursts, and charge-coupled device (CCD) camera-based speckle contrast detection.

View Article and Find Full Text PDF

A reflection-mode photoacoustic (PA) imaging system was designed and built to image deep structures in biological tissues. We chose near-infrared laser pulses of 804-nm wavelength for PA excitation to achieve deep penetration. To minimize unwanted surface signals, we adopted dark-field ring-shaped illumination.

View Article and Find Full Text PDF

An in vivo photoacoustic imaging system was designed and implemented to image the entire small animal head. A special scanning gantry was designed to enable in vivo imaging in coronal cross sections with high contrast and good spatial resolution for the first time to our knowledge. By use of a 2.

View Article and Find Full Text PDF