Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum).
View Article and Find Full Text PDFWe identified a gene product of At5g19500 (At5g19500p) from Arabidopsis thaliana that is homologous to EcTyrP, a tyrosine-specific transporter from Escherichia coli. Computational analyses of the amino acid sequence of At5g19500p predicted 11 transmembrane domains (TMDs) and a potential plastid targeting signal at its amino terminus. As a first step toward understanding the possible role of At5g19500p in plant cells, we attempted to determine the localization of At5g19500p by an in vitro chloroplastic import assay using At5g19500p translated in a cell-free wheat germ system (Madin et al.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
February 2012
Despite recent progress in fluorescence techniques employed to observe protein localization in living cells, the in vitro chloroplastic protein transport assay remains a useful tool for determining the destinations of proteins. Although an in vitro synthesized, radiolabeled precursor protein is frequently used as the transport substrate, we have developed a transport assay system with a non-radiolabeled precursor protein that carries an epitope tag and is overexpressed in Escherichia coli. Thus, a transported protein can be detected by immunoblotting (Inoue et al.
View Article and Find Full Text PDF