Inherited retinal dystrophies, such as Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa, are characterized by photoreceptor dysfunction and death and currently have few treatment options. Recent technological advances in induced pluripotent stem cell (iPSC) technology and differentiation methods mean that human photoreceptors can now be studied in vitro. For example, retinal organoids provide a platform to study the development of the human retina and mechanisms of diseases in the dish, as well as being a potential source for cell transplantation.
View Article and Find Full Text PDFΔR4-R23/ΔCT micro-dystrophin (μDys) is a miniaturized version of dystrophin currently evaluated in a Duchenne muscular dystrophy (DMD) gene therapy trial to treat skeletal and cardiac muscle disease. In pre-clinical studies, μDys efficiently rescues cardiac histopathology, but only partially normalizes cardiac function. To gain insights into factors that may impact the cardiac therapeutic efficacy of μDys, we compared by mass spectrometry the composition of purified dystrophin and μDys protein complexes in the mouse heart.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFExpression of OCT4A is one of the hallmarks of pluripotency, defined as a stem cell's ability to differentiate into all the lineages of the three germ layers. Despite being defined as non-tumorigenic cells with high translational potential, human mid-trimester amniotic fluid stem cells (hAFSCs) are often described as sharing features with embryonic stem cells, including the expression of OCT4A, which could hinder their clinical potential. To clarify the OCT4A status of hAFSCs, we first undertook a systematic review of the literature.
View Article and Find Full Text PDFThe dystrophin-glycoprotein complex (DGC) links the muscle cytoskeleton to the extracellular matrix and is responsible for force transduction and protects the muscle fibres from contraction induced damage. Mutations in components of the DGC are responsible for muscular dystrophies and congenital myopathies. Expression of DGC components have been shown to be altered in many myopathies.
View Article and Find Full Text PDFHuman mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particular, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the hurdle of replicative senescence associated with the in vitro expansion of primary cells and has increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and possess longer telomeres and a wider differentiation potential than adult MSCs.
View Article and Find Full Text PDFExon skipping mediated by tricyclo-DNA (tc-DNA) antisense oligonucleotides has been shown to induce significant levels of dystrophin restoration in mdx, a mouse model of Duchenne muscular dystrophy. This translates into significant improvement in key disease indicators in muscle, cardio-respiratory function, heart, and the CNS. Here we examine the relationship between muscle fiber type, based on myosin heavy chain (MHC) profile, and the ability of tc-DNA to restore not only dystrophin but also other members of the dystrophin-associated glycoprotein complex (DAPC).
View Article and Find Full Text PDFThe human amniotic fluid stem cell (hAFSC) population consists of two morphologically distinct subtypes, spindle-shaped and round-shaped cells (SS-hAFSCs and RS-hAFSCs). Whilst SS-hAFSCs are routinely expanded in mesenchymal-type (MT) conditions, we previously showed that they acquire broader differentiation potential when cultured under embryonic-type (ET) conditions. However, the effects of culture conditions on RS-hAFSCs have not been determined.
View Article and Find Full Text PDFRestoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.
View Article and Find Full Text PDFThe impaired maturation of bone-forming osteoblasts results in reduced bone formation and subsequent bone weakening, which leads to a number of conditions such as osteogenesis imperfecta (OI). Transplantation of human fetal mesenchymal stem cells has been proposed as skeletal anabolic therapy to enhance bone formation, but the mechanisms underlying the contribution of the donor cells to bone health are poorly understood and require further elucidation. Here, we show that intraperitoneal injection of human amniotic mesenchymal stem cells (AFSCs) into a mouse model of OI (oim mice) reduced fracture susceptibility, increased bone strength, improved bone quality and micro-architecture, normalised bone remodelling and reduced TNFα and TGFβ sigalling.
View Article and Find Full Text PDFAlport syndrome (AS) is a hereditary glomerulopathy caused by a mutation in type IV collagen genes, which disrupts glomerular basement membrane, leading to progressive glomerulosclerosis and end-stage renal failure. There is at present no cure for AS, and cell-based therapies offer promise to improve renal function. In this study, we found that human first trimester fetal chorionic stem cells (CSC) are able to migrate to glomeruli and differentiate down the podocyte lineage in vitro and in vivo.
View Article and Find Full Text PDF