We produced poro-us poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite scaffolds for bone regeneration, which can have a tailored macro/micro-porous structure with high mechanical properties and excellent in vitro bioactivity using non-solvent-induced phase separation (NIPS)-based 3D plotting. This innovative 3D plotting technique can create highly microporous PCL/HA composite filaments by inducing unique phase separation in PCL/HA solutions through the non-solvent-solvent exchange phenomenon. The PCL/HA composite scaffolds produced with various HA contents (0 wt %, 10 wt %, 15 wt %, and 20 wt %) showed that PCL/HA composite struts with highly microporous structures were well constructed in a controlled periodic pattern.
View Article and Find Full Text PDFBackground: Calcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would inevitably cause a severe reduction in mechanical properties.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2014
We produced highly porous gelatin-siloxane (GLA-S) hybrid scaffolds with biomimetic anisotropic porous structure, physiochemical properties, mechanical behaviors and biological functions by treating gelatin-siloxane hybrid gels in an ammonium hydroxide solution. The siloxane used as an inorganic phase could effectively crosslink the gelatin polymer, which allowed for the unidirectional enlargement of ammonia vacuoles during ammonium hydroxide treatment. This created aligned pores in an axial direction when the siloxane contents (10 and 20 wt %) were high.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2013
This study investigated the effect of the addition of sol-gel derived nanoscale bioactive glass (NBG) particles on the mechanical properties and biological performances of PCL polymer, in order to evaluate the potential applications of PCL/NBG composites for bone tissue regeneration. Regardless of the NBG contents (10, 20, and 30 wt.%), the NBG particles, which were synthesized through the sol-gel process using polyethylene glycol (PEG) polymer as a template, could be uniformly dispersed in the PCL matrix, while generating pores in the PCL/NBG composites.
View Article and Find Full Text PDFThis study investigated the utility of poly(ether imide) (PEI) coating for improving the corrosion resistance and biocompatibility of magnesium (Mg) implants for orthopedic application. In particular, the microstructure of the PEI coating layers was controlled by the adjustment of the temperature used to dry the spin-coated wet PEI films. When a wet PEI film was dried at 4°C, a relatively thick and porous coating layer was achieved as a result of an extensive exchange of the solvent with water in a moist environment.
View Article and Find Full Text PDFHighly porous titanium with aligned large pores up to 500 μm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperature of 45.5°C and formed a titanium-camphene mixture with an aligned structure; this was followed by freeze drying and sintering.
View Article and Find Full Text PDFThis study examined the utility of sol-gel-derived bioactive glass microspheres (BGMs) as a reinforcement to improve the mechanical properties and biological performance of poly(ε-caprolactone) (PCL) polymer. All of the PCL-BGMs composites produced, with a variety of BGMs contents (10, 20, and 30 wt %), showed a uniform distribution of the BGMs in the PCL matrix, particularly owing to their spherical shape and small size. This led to a considerable increase in the elastic modulus from 93 ± 12 MPa to 635 ± 179 MPa with increasing BGMs content from 0 to 30 wt %.
View Article and Find Full Text PDF