Publications by authors named "Kwan W Tan"

The current synthesis methods of high-entropy alloy (HEA) thin-film coatings face huge challenges in facile preparation, precise thickness control, conformal integration, and affordability. These challenges are more specific and noteworthy for noble metal-based HEA thin films where the conventional sputtering methods encounter thickness control and high-cost issues (high-purity noble metal targets required). Herein, for the first time, we report a facile and controllable synthesis process of quinary HEA coatings consisting of noble metals (Rh, Ru, Pt, Pd, and Ir), by sequential atomic layer deposition (ALD) coupled with electrical Joule heating for post-alloying.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles have highly versatile structural properties that are suitable for a plethora of applications including catalysis, separation, and nanotherapeutics. We report a one-pot synthesis strategy that generates bimodal mesoporous silica nanoparticles via coassembly of a structure-directing Gemini surfactant (C) with a tetraethoxysilane/(3-aminopropyl)triethoxysilane-derived sol additive. Synthesis temperature enables control of the nanoparticle shape, structure, and mesopore architecture.

View Article and Find Full Text PDF

Metal alloys are usually fabricated by melting constituent metals together or sintering metal alloy particles made by high energy ball milling (mechanical alloying). All these methods only allow for bulk alloys to be formed. This manuscript details a new method of fabricating Rhodium-Iridium (Rh-Ir) metal alloy films using atomic layer deposition (ALD) and rapid Joule heating induced alloying that gives functional thin film alloys, enabling conformal thin films with high aspect ratios on 3D nanostructured substrate.

View Article and Find Full Text PDF

Block copolymer self-assembly-derived thin films provide direct access to two- and three-dimensional periodically ordered mesostructures as enablers for many nanotechnology applications. This report describes laser-annealing-induced disorder-order mesophase transitions of polystyrene--poly(ethylene oxide)/resol hybrid thin films over a range of laser temperatures (∼45 to 525 °C) and short dwell times (0.25 to 100 ms), revealing the non-equilibrium ordering and disordering kinetics and behaviors.

View Article and Find Full Text PDF

We describe a versatile and scalable strategy toward long-range and periodically ordered mesoporous alumina (AlO) structures by evaporation-induced self-assembly of a structure-directing ABA triblock copolymer (F127) mixed with aluminum tri--butoxide-derived sol additive. We found that the separate preparation of the alkoxide sol-gel reaction before mixing with the block copolymer enabled access to a relatively unexplored parameter space of copolymer-to-additive composition, acid-to-metal molar ratio, and solvent, yielding ordered mesophases of two-dimensional (2D) lamellar, hexagonal cylinder, and 3D cage-like cubic lattices, as well as multiscale hierarchical ordered structures from spinodal decomposition-induced macro- and mesophase separation. Thermal annealing in air at 900 °C yielded well-ordered mesoporous crystalline γ-AlO structures and hierarchically porous γ-AlO with 3D interconnected macroscale and ordered mesoscale pore networks.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials (NM) have emerged as promising platforms for antibacterial applications. However, the inherent "flatness" of 2D NM often limits the loading of antimicrobial components needed for synergistic bactericidal actions. Here, inspired by the highly ornamented siliceous frustules of diatoms, we prepared 2D ultrathin (<20 nm) and rigid "nanofrustule" plates the out-of-plane growth of cetyltrimethylammonium bromide (CTAB) directed silica mesostructures on the surfaces of 2D graphene oxide nanosheets.

View Article and Find Full Text PDF

This report describes a simple one-pot soft-templating and ammonolysis-free approach to synthesize mesoporous crystalline titanium oxynitride by combining block copolymer-directed self-assembly with metal sol and urea precursors. The Pluronic F127 triblock copolymer was employed to structure-direct titanium-oxo-acetate sol nanoparticles and urea-formaldehyde into ordered hybrid mesostructured monoliths. The hybrid composites were directly converted into mesoporous crystalline titanium oxynitride and retained macroscale monolithic integrity up to 800 °C under nitrogen.

View Article and Find Full Text PDF

Despite extensive studies on mesoporous silica since the early 1990s, the synthesis of two-dimensional (2D) silica nanostructures remains challenging. Here, mesoporous silica is synthesized at an interface between two immiscible solvents under conditions leading to the formation of 2D superstructures of silica cages, the thinnest mesoporous silica films synthesized to date. Orientational correlations between cage units increase with increasing layer number controlled via pH, while swelling with oil and mixed surfactants increase micelle size dispersity, leading to complex clathrate type structures in multilayer superstructures.

View Article and Find Full Text PDF

This report describes the generation of three-dimensional (3D) crystalline silicon continuous network nanostructures by coupling all-organic block copolymer self-assembly-directed resin templates with low-temperature silicon chemical vapor deposition and pulsed excimer laser annealing. Organic 3D mesoporous continuous-network resin templates were synthesized from the all-organic self-assembly of an ABC triblock terpolymer and resorcinol-formaldehyde resols. Nanosecond pulsed excimer laser irradiation induced the transient melt transformation of amorphous silicon precursors backfilled in the organic template into complementary 3D mesoporous crystalline silicon nanostructures with high pattern fidelity.

View Article and Find Full Text PDF

Current anticancer drug discovery efforts focus on the identification of first-in-class compounds with a mode-of-action distinct from conventional DNA-targeting agents for chemotherapy. An emerging trend is the identification of endoplasmic reticulum (ER) targeting compounds that induce ER stress in cancer cells, leading to cell death. However, a limited pool of such compounds has been identified to date, and there are limited studies done on such compounds to allow for the rational design of ER stress-inducing agents.

View Article and Find Full Text PDF

Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols.

View Article and Find Full Text PDF

Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas.

View Article and Find Full Text PDF

Stimuli-responsive materials have attracted great interest in catalysis, sensing, and drug delivery applications and are typically constituted by soft components. We present a one-pot synthetic method for a type of inorganic silica-based shape change material that is responsive to water vapor exposure. After the wetting treatment, the cross-sectional shape of aminated mesoporous silica nanoparticles (MSNs) with hexagonal pore lattice changed from hexagonal to six-angle-star, accompanied by the loss of periodic mesostructural order.

View Article and Find Full Text PDF

Development of rapid processes combining hierarchical self-assembly with mesoscopic shape control has remained a challenge. This is particularly true for high-surface-area porous materials essential for applications including separation and detection, catalysis, and energy conversion and storage. We introduce a simple and rapid laser writing method compatible with semiconductor processing technology to control three-dimensionally continuous hierarchically porous polymer network structures and shapes.

View Article and Find Full Text PDF

Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film.

View Article and Find Full Text PDF

Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts.

View Article and Find Full Text PDF

Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation.

View Article and Find Full Text PDF

Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents.

View Article and Find Full Text PDF

This report describes an ultrafast, large-area, and highly flexible method to construct complex two- and three-dimensional silicon nanostructures with deterministic non-close-packed symmetry. Pulsed excimer laser irradiation is used to induce a transient melt transformation of amorphous silicon filled in a colloidal self-assembly-directed inverse opal template, resulting in a nanostructured crystalline phase. The pattern transfer yields are high, and long-range order is maintained.

View Article and Find Full Text PDF

Epitaxy is a widely used method to grow high-quality crystals. One of the key challenges in the field of inorganic solids is the development of epitaxial single-crystal nanostructures. We describe their formation from block copolymer self-assembly-directed nanoporous templates on single-crystal Si backfilled with Si or NiSi through a laser-induced transient melt process.

View Article and Find Full Text PDF

In the colloidal self-assembly of charged particles on surfaces with opposite polarity, disorder often dominates. In this report, we show that ionic strength, volume fraction, and solvent evaporation temperature can be optimized in the vertical deposition method to yield hexagonal close-packed monolayer arrays with positively charged colloids on negatively charged bare glass. We further extend our study to form well-defined binary two-dimensional superlattices with oppositely charged monolayers grown layer-by-layer.

View Article and Find Full Text PDF

We investigate the two-dimensional (2D) colloidal structures formed by oppositely charged polystyrene monolayers grown layer-by-layer, where the electrostatic forces are recruited to assist in the packing of the layers. Our results show a transition through several 2D-superlattices to more close-packed structures with increasing ionic strength. The observed geometrical packing constraints of the 2D-superlattice structures agree well with the estimated Debye screening length of the electric double layer.

View Article and Find Full Text PDF