Optimal first-line treatment that enables deeper and longer remission is crucially important for newly diagnosed multiple myeloma (NDMM). In this study, we developed the machine learning (ML) models predicting overall survival (OS) or response of the transplant-ineligible NDMM patients when treated by one of the two regimens-bortezomib plus melphalan plus prednisone (VMP) or lenalidomide plus dexamethasone (RD). Demographic and clinical characteristics obtained during diagnosis were used to train the ML models, which enabled treatment-specific risk stratification.
View Article and Find Full Text PDFChromatin immunoprecipitation (ChIP) is an antibody-based approach that is frequently utilized in chromatin biology and epigenetics. The challenge in experimental variability by unpredictable nature of usable input amounts from samples and undefined antibody titer in ChIP reaction still remains to be addressed. Here, we introduce a simple and quick method to quantify chromatin inputs and demonstrate its utility for normalizing antibody amounts to the optimal titer in individual ChIP reactions.
View Article and Find Full Text PDFULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation.
View Article and Find Full Text PDFReduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival.
View Article and Find Full Text PDFMammalian target of rapamycin (mTOR) enhances translation from a subset of messenger RNAs containing distinct 5'-untranslated region (UTR) sequence features. Here we identify 3'-UTR shortening of mRNAs as an additional molecular signature of mTOR activation and show that 3'-UTR shortening enhances the translation of specific mRNAs. Using genetic or chemical modulations of mTOR activity in cells or mouse tissues, we show that cellular mTOR activity is crucial for 3'-UTR shortening.
View Article and Find Full Text PDFULK1 (unc-51 like kinase 1) is a serine/threonine protein kinase that plays a key role in regulating the induction of autophagy. Recent studies using autophagy-defective mouse models, such as atg5- or atg7-deficient mice, revealed an important function of autophagy in adipocyte differentiation. Suppression of adipogenesis in autophagy-defective conditions has made it difficult to study the roles of autophagy in metabolism of differentiated adipocytes.
View Article and Find Full Text PDFAndrogen receptor (AR) signaling is crucial for the genesis and progression of prostate cancer (PCa). We compared the growth responses of AR(+) LNCaP and LNCaP C4-2 vs. AR(-) DU145 and PC-3 PCa cell lines to galbanic acid (GBA) isolated from the resin of medicinal herb Ferula assafoetida and assessed their connection to AR signaling and cell cycle regulatory pathways.
View Article and Find Full Text PDFPurpose: To investigate whether galbanic acid (GBA) exerts anti-angiogenic and anti-cancer activities.
Methods: Using human umbilical vein endothelial cell (HUVEC) model, we analyzed effects of GBA on cellular and molecular events related to angiogenesis. We tested its direct anti-proliferative action on mouse Lewis lung cancer (LLC) cells and established its in vivo anti-angiogenic and anti-tumor efficacy using LLC model.
Farnesiferol C (FC) is one of the major compounds isolated from Ferula assafoetida, an Asian herbal spice used for cancer treatment as a folk remedy. Here, we examined the hypothesis that novel antiangiogenic activities of FC contribute to anticancer efficacy. In human umbilical vein endothelial cells (HUVEC), exposure to the 10 to 40 mumol/L concentration range of FC inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, invasion, tube formation, and the expression of matrix metalloproteinase-2.
View Article and Find Full Text PDFCancer pain impairs the quality of life of cancer patients, but opioid analgesics can not only cause inhibition of respiratory function, and constipation, but also other significant side effects such as addiction and tolerance that further decrease quality of life. Thus, in the present study, the effects of electro-acupuncture treatment (EA) on mechanical allodynia were examined in cancer pain mouse model. In order to induce neuropathic cancer pain model, S-180 sarcoma cells were inoculated around the sciatic nerve of left legs of Balb/c mice.
View Article and Find Full Text PDFBackground: Opioid analgesics are generally used to combat the pain associated with cancerous conditions. These agents not only inhibit respiratory function and cause constipation, but also induce other significant side effects such as addiction and tolerance, all of which further contribute to a reduced quality of life for cancer patients. Thus, in the present study, the effects of electro-acupuncture treatment (EA) on mechanical allodynia were examined in a cancer pain mouse model.
View Article and Find Full Text PDFWe have reported that a 10-herbal traditional formula containing Korean Angelica gigas Nakai (AGN) exerts potent anti-cancer efficacy and identified decursin and decursinol angelate (DA) from AGN as novel anti-androgens. Here, we determined whether AGN would exert in vivo anti-cancer activity and whether decursin or DA could account for its efficacy. The AGN ethanol extract was tested against the growth of mouse Lewis lung cancer (LLC) allograft in syngenic mice or human PC-3 and DU145 prostate cancer xenograft in immunodeficient mice.
View Article and Find Full Text PDFAim Of The Study: Actinostemma lobatum Maxim, a wildlife plant of Cucurbitaceae family, has been utilized for the prevention or treatment of cardiovascular diseases as a folk remedy in Korea. However, its scientific evidence remains unclear. Thus, in the present study, we examined the effects of butanol fraction of Actinostemma lobatum Maxim (BFALM) on the in vitro and in vivo antithrombotic activity and possible mechanisms were elucidated for the first time.
View Article and Find Full Text PDFIndole-3-carbinol, a natural compound found in cruciferous vegetables, is known to have anticancer activity. In the present study, the antiplatelet and antithrombotic activities of indole-3-carbinol were investigated in vitro and in vivo. Indole-3-carbinol significantly inhibited collagen-induced platelet aggregation in human platelet rich plasma (PRP) in a concentration-dependent manner.
View Article and Find Full Text PDFCampesterol, a plant sterol in nature, is known to have cholesterol lowering and anticarcinogenic effects. Since angiogenesis is essential for cancer, it was surmised that an antiangiogenic effect may be involved in the anticancer action of this compound. This study investigated the effect of campesterol on basic fibroblast growth factor (bFGF)-induced angiogenesis in vitro in human umbilical vein endothelial cells (HUVECs) and an in vivo chorioallantoic membrane (CAM) model.
View Article and Find Full Text PDFTrichosanthis kirilowii MAXIM has been used as a folk remedy to treat diabetes, leukemia, and breast cancer. In the present study, the apoptotic mechanism of the methylene chloride fraction of Trichosanthis Fructus (MCTF) was investigated in human leukemic U937 cells. MCTF exhibited antiproliferative effectsagainst U937 cells (IC50=ca.
View Article and Find Full Text PDF