Publications by authors named "Kwaku Kyei-Baffour"

Background And Objectives: Epididymal transit renders key competence to mammalian spermatozoa for fertilizing eggs. Generally, the two paralogs of glycogen synthase kinase 3, GSK3α and GSK3β, functionally overlap except in testis and sperm. We showed that GSK3α is essential for epididymal sperm maturation and fertilization.

View Article and Find Full Text PDF

Survivin, a member of the inhibitor of apoptosis protein family, exists as a homodimer and is aberrantly upregulated in a wide spectrum of cancers. It was thought to be an ideal target due to its lack of expression in most adult normal tissues and importance in cancer cell survival. However, it has been challenging to target survivin due to its "undruggable" nature.

View Article and Find Full Text PDF

Malaria is a prevalent and deadly disease. The fast emergence of drug-resistant malaria parasites makes the situation even worse. Thus, developing new chemical entities, preferably with novel mechanisms of action, is urgent and important.

View Article and Find Full Text PDF

U-47700, 3,4-dichloro--((1,2)-2-(dimethylamino)cyclohexyl)--methyl benzamide, is a novel synthetic opioid (NSO), discovered by the Upjohn company in the late 1970s. With potent activity, ∼10-times greater than that of morphine, U-47700 has become a drug of widespread abuse due to its ease of synthesis and, until recently, lack of robust detection methods by law enforcement. U-47700 has been found in counterfeit oxycodone tablets and is a key ingredient in "gray death.

View Article and Find Full Text PDF

Survivin, a homodimeric member of the Inhibitor of Apoptosis Protein (IAP) family, is required for cancer cell survival and overexpressed in almost all solid tumors. However, targeting survivin has been challenging due to its "undruggable" nature. Recently, we used a novel approach to target the dimerization interface and identified inhibitors of two scaffolds that can directly bind to and inhibit survivin dimerization.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the antibacterial activity of a synthetic aryl isonitrile compound (35) that was developed as part of a compound library to identify new antibacterial agents effective against methicillin-resistant Staphylococcus aureus (MRSA).

Methods: Compound 35 was evaluated against MRSA isolates by the broth microdilution assay and for toxicity to mammalian keratinocytes using the MTS assay. A multistep resistance selection assay was conducted to investigate MRSA resistance development to 35.

View Article and Find Full Text PDF

Antibiotic resistance remains a major global public health threat that requires sustained discovery of novel antibacterial agents with unexploited scaffolds. Structure-activity relationship of the first-generation aryl isonitrile compounds we synthesized led to an initial lead molecule that informed the synthesis of a second-generation of aryl isonitriles. From this new series of 20 compounds, three analogues inhibited growth of methicillin-resistant Staphylococcus aureus (MRSA) (from 1 to 4 µM) and were safe to human keratinocytes.

View Article and Find Full Text PDF

Invasive fungal infections present a formidable global public health challenge due to the limited number of approved antifungal agents and the emergence of resistance to the frontline treatment options, such as fluconazole. Three fungal pathogens of significant concern are Candida, Cryptococcus, and Aspergillus given their propensity to cause opportunistic infections in immunocompromised individuals. New antifungal agents composed of unique chemical scaffolds are needed to address this public health challenge.

View Article and Find Full Text PDF

Methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA) have emerged as a global health concern. A new class of compounds featuring an aryl isonitrile moiety has been discovered that exhibits potent inhibitory activity against several clinically-relevant MRSA and VRSA isolates. Structure-activity relationship studies have been conducted to identify the aryl isonitrile group as the key functional group responsible for the observed antibacterial activity.

View Article and Find Full Text PDF