Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.
View Article and Find Full Text PDFSelf-sustained locomotion of synthetic droplet swimmers has been of great interest due to their ability to mimic the behavior of biological swimmers. Here we harness the Belousov-Zhabotinsky (BZ) reaction to induce Marangoni stresses on the fluid-droplet interface and elucidate the spontaneous locomotion of active BZ droplets in a confined two-dimensional channel. Our approach employs the lattice Boltzmann method to simulate a coupled system of multiphase hydrodynamics and BZ-reaction kinetics.
View Article and Find Full Text PDFEur Phys J E Soft Matter
July 2021
Chemically active Janus particles generate tangential concentration gradients along their surface for self-propulsion. Although this is well studied in unbounded domains, the analysis in biologically relevant environments such as confinement is scarce. In this work, we study the motion of a Janus sphere in weak confinement.
View Article and Find Full Text PDF