Publications by authors named "Kvrns Ramesh"

Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development.

View Article and Find Full Text PDF

Blood cancer, also known as hematological malignancy, is one of the devastating types of cancer that has significantly paved its mortality mark globally. It persists as an extremely deadly cancer type and needs utmost attention owing to its negligible overall survival rate. Major challenges in the treatment of blood cancer include difficulties in early diagnosis, as well as severe side effects resulting from chemotherapy.

View Article and Find Full Text PDF

In recent years, microneedles (MNs) have emerged as a promising alternative to traditional drug delivery systems in transdermal drug delivery. The use of MNs has demonstrated significant potential in improving patient acceptance and convenience while avoiding the invasiveness of traditional injections. Dissolving, solid, hollow, coated, and hydrogel microneedles are among the various types studied for drug delivery.

View Article and Find Full Text PDF
Article Synopsis
  • Novel drug delivery systems (DDS) are focusing on smart biomaterials that enable localized and on-demand drug release in response to various stimuli, enhancing treatment effectiveness.
  • Biodegradable polymers are commonly used for long-term drug release but can face issues like dose dumping; smart biomaterials aim to address these challenges by releasing drugs only when needed.
  • The review highlights advancements in electrically conductive polymers, their diverse applications in drug delivery, biosensing, and tissue engineering, and discusses their structural and functional properties along with future research directions.
View Article and Find Full Text PDF

Transdermal drug delivery of lidocaine is a good choice for local anesthetic delivery. Microemulsions have shown great effectiveness for the transdermal transport of lidocaine. Oil-in-water nanoemulsions are particularly suitable for encapsulation of lipophilic molecules because of their ability to form stable and transparent delivery systems with good skin permeation.

View Article and Find Full Text PDF

The application of various nanocarrier systems was widely explored in the field of pharmaceuticals to achieve better drug encapsulation and delivery. The aim of this study was to encapsulate lidocaine in alginate-based o/w nanocarriers based on the type of oil (i.e.

View Article and Find Full Text PDF

To prepare loratadine-loaded solid lipid nanoparticles (SLNs) using a modified two-step ultrasound-assisted phase inversion temperature (PIT) process. Loratadine was dissolved in beeswax and Tween 80 was dissolved in water. The two phases were mixed together to prepare a water-in-oil emulsion preconcentrate (w/o) at a PIT of 85°C, followed by gradual water addition at 25°C to trigger nanoparticles formation (o/w).

View Article and Find Full Text PDF

Nanoemulsions are very interesting systems as they offer capacity to encapsulate both hydrophilic and lipophilic molecules in a single particle, as well as the controlled release of chemical moieties initially entrapped in the internal droplets. In this study, we propose a new two-step modified ultrasound-assisted phase inversion approaches-phase inversion temperature (PIT) and self-emulsification, to prepare stable o/w nanoemulsions from a fully water-dilutable microemulsion template for the transdermal delivery of loratadine (a hydrophobe and as Ostwald ripening inhibitor). Firstly, the primary water-in-oil microemulsion concentrate (w/o) was formed using loratadine in the oil phase (oleic acid or coconut oil) and Tween 80 in the aqueous phase and by adjusting the PIT around 85 °C followed by stepwise dilution with water at 25 °C to initiate the formation the nanoemulsions (o/w).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1mfsj8t0u0of8mnfu1g86f3ufv14if1i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once