Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development.
View Article and Find Full Text PDFBlood cancer, also known as hematological malignancy, is one of the devastating types of cancer that has significantly paved its mortality mark globally. It persists as an extremely deadly cancer type and needs utmost attention owing to its negligible overall survival rate. Major challenges in the treatment of blood cancer include difficulties in early diagnosis, as well as severe side effects resulting from chemotherapy.
View Article and Find Full Text PDFIn recent years, microneedles (MNs) have emerged as a promising alternative to traditional drug delivery systems in transdermal drug delivery. The use of MNs has demonstrated significant potential in improving patient acceptance and convenience while avoiding the invasiveness of traditional injections. Dissolving, solid, hollow, coated, and hydrogel microneedles are among the various types studied for drug delivery.
View Article and Find Full Text PDFTransdermal drug delivery of lidocaine is a good choice for local anesthetic delivery. Microemulsions have shown great effectiveness for the transdermal transport of lidocaine. Oil-in-water nanoemulsions are particularly suitable for encapsulation of lipophilic molecules because of their ability to form stable and transparent delivery systems with good skin permeation.
View Article and Find Full Text PDFThe application of various nanocarrier systems was widely explored in the field of pharmaceuticals to achieve better drug encapsulation and delivery. The aim of this study was to encapsulate lidocaine in alginate-based o/w nanocarriers based on the type of oil (i.e.
View Article and Find Full Text PDFTo prepare loratadine-loaded solid lipid nanoparticles (SLNs) using a modified two-step ultrasound-assisted phase inversion temperature (PIT) process. Loratadine was dissolved in beeswax and Tween 80 was dissolved in water. The two phases were mixed together to prepare a water-in-oil emulsion preconcentrate (w/o) at a PIT of 85°C, followed by gradual water addition at 25°C to trigger nanoparticles formation (o/w).
View Article and Find Full Text PDFNanoemulsions are very interesting systems as they offer capacity to encapsulate both hydrophilic and lipophilic molecules in a single particle, as well as the controlled release of chemical moieties initially entrapped in the internal droplets. In this study, we propose a new two-step modified ultrasound-assisted phase inversion approaches-phase inversion temperature (PIT) and self-emulsification, to prepare stable o/w nanoemulsions from a fully water-dilutable microemulsion template for the transdermal delivery of loratadine (a hydrophobe and as Ostwald ripening inhibitor). Firstly, the primary water-in-oil microemulsion concentrate (w/o) was formed using loratadine in the oil phase (oleic acid or coconut oil) and Tween 80 in the aqueous phase and by adjusting the PIT around 85 °C followed by stepwise dilution with water at 25 °C to initiate the formation the nanoemulsions (o/w).
View Article and Find Full Text PDF