Publications by authors named "Kvalnes T"

Harvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long-term viability. The effective population size ( ) is a fundamental parameter for describing such changes as it determines the amount of genetic drift in a population.

View Article and Find Full Text PDF

Telomeres, the nucleotide sequences that protect the ends of eukaryotic chromosomes, shorten with each cell division and telomere loss may be influenced by environmental factors. Telomere length (TL) decreases with age in several species, but little is known about the sources of genetic and environmental variation in the change in TL (∆TL) in wild animals. In this study, we tracked changes in TL throughout the natural lifespan (from a few months to almost 9 years) of free-living house sparrows (Passer domesticus) in two different island populations.

View Article and Find Full Text PDF

An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus).

View Article and Find Full Text PDF
Article Synopsis
  • Environmental factors during early life significantly influence telomere length (TL), which may affect fitness traits in wild house sparrows.
  • The study found a negative correlation between population density and TL in one of the populations, alongside a complex relationship between TL and weather conditions that suggests optimal conditions exist.
  • While TL didn’t predict survival, individuals with shorter telomeres showed higher reproductive success, indicating that shorter TL may be linked to a faster life pace and higher dispersal rates.
View Article and Find Full Text PDF

The capacity of natural selection to generate adaptive changes is (according to the fundamental theorem of natural selection) proportional to the additive genetic variance in fitness. In spite of its importance for development of new adaptations to a changing environment, processes affecting the magnitude of the genetic variance in fitness-related traits are poorly understood. Here, we show that the red-white colour polymorphism in female barn owls is subject to density-dependent selection at the phenotypic and genotypic level.

View Article and Find Full Text PDF

Telomere dynamics could underlie life-history trade-offs among growth, size and longevity, but our ability to quantify such processes in natural, unmanipulated populations is limited. We investigated how 4 years of artificial selection for either larger or smaller tarsus length, a proxy for body size, affected early-life telomere length (TL) and several components of fitness in two insular populations of wild house sparrows over a study period of 11 years. The artificial selection was expected to shift the populations away from their optimal body size and increase the phenotypic variance in body size.

View Article and Find Full Text PDF
Article Synopsis
  • Early-life telomere length (TL) in house sparrows is slightly heritable (h = 0.04) but mainly influenced by environmental factors and specific brood and parental effects over a 20-year study.
  • Significant maternal inheritance impacts TL (with a correlation of 0.44), while no paternal inheritance was found, suggesting potential differences in how mothers and fathers contribute genetically.
  • Genome-wide association analysis revealed several genes linked to TL variation, associated with processes like oxidative stress and growth, indicating TL's evolution is primarily shaped by environmental influences rather than direct genetic correlation to body size.
View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide association studies can reveal genetic factors for adaptive traits in wild species, but past research struggled to pinpoint key genes.
  • In this study, researchers identified a specific gene responsible for Arctic fox fur color and demonstrated its link to individual fitness, with heterozygous blue foxes showing better survival than homozygous white ones.
  • The findings highlight the influence of ecological factors like prey availability on genotype fitness and suggest that whole-genome analyses can effectively uncover significant genes influencing adaptations in wild populations.
View Article and Find Full Text PDF

Generation time determines the pace of key demographic and evolutionary processes. Quantified as the weighted mean age at reproduction, it can be studied as a life-history trait that varies within and among populations and may evolve in response to ecological conditions. We combined quantitative genetic analyses with age- and density-dependent models to study generation time variation in a bird metapopulation.

View Article and Find Full Text PDF

Dispersal has a crucial role determining ecoevolutionary dynamics through both gene flow and population size regulation. However, to study dispersal and its consequences, one must distinguish immigrants from residents. Dispersers can be identified using telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods.

View Article and Find Full Text PDF

Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations.

View Article and Find Full Text PDF

Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression.

View Article and Find Full Text PDF

Host-parasite relationships are likely to change over the coming decades in response to climate change and increased anthropogenic stressors. Understanding the genetic architecture of parasite resistance will aid prediction of species' responses to intensified parasite challenge. The gapeworm "Syngamus trachea" is prevalent in natural bird populations and causes symptomatic infections ranging from mild to severe.

View Article and Find Full Text PDF

Stabilizing selection is thought to be common in wild populations and act as one of the main evolutionary mechanisms, which constrain phenotypic variation. When multiple traits interact to create a combined phenotype, correlational selection may be an important process driving adaptive evolution. Here, we report on phenotypic selection and evolutionary changes in two natal traits in a semidomestic population of reindeer (Rangifer tarandus) in northern Finland.

View Article and Find Full Text PDF

Climate and weather conditions may have substantial effects on the ecology of both parasites and hosts in natural populations. The strength and shape of the effects of weather on parasites and hosts are likely to change as global warming affects local climate. These changes may in turn alter fundamental elements of parasite-host dynamics.

View Article and Find Full Text PDF

Body size plays a key role in the ecology and evolution of all organisms. Therefore, quantifying the sources of morphological (co)variation, dependent and independent of body size, is of key importance when trying to understand and predict responses to selection. We combine structural equation modeling with quantitative genetics analyses to study morphological (co)variation in a meta-population of house sparrows (Passer domesticus).

View Article and Find Full Text PDF

Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses.

View Article and Find Full Text PDF

Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown. Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill depth, bill length, total and visible badge size and white wing patches).

View Article and Find Full Text PDF

A general assumption in quantitative genetics is the existence of an intermediate phenotype with higher mean individual fitness in the average environment than more extreme phenotypes. Here, we investigate the evolvability and presence of such a phenotype in wild bird populations from an eleven-year experiment with four years of artificial selection for long and short tarsus length, a proxy for body size. The experiment resulted in strong selection in the imposed directions.

View Article and Find Full Text PDF

The ratio between the effective and the census population size, Ne/N, is an important measure of the long-term viability and sustainability of a population. Understanding which demographic processes that affect Ne/N most will improve our understanding of how genetic drift and the probability of fixation of alleles is affected by demography. This knowledge may also be of vital importance in management of endangered populations and species.

View Article and Find Full Text PDF

Experimental evolution studies can be used to explore genomic response to artificial and natural selection. In such studies, loci that display larger allele frequency change than expected by genetic drift alone are assumed to be directly or indirectly associated with traits under selection. However, such studies report surprisingly many loci under selection, suggesting that current tests for allele frequency change may be subject to P-value inflation and hence be anticonservative.

View Article and Find Full Text PDF

Empirical evidence strongly indicates that human exploitation has frequently led to rapid evolutionary changes in wild populations, yet the mechanisms involved are often poorly understood. Here, we applied a recently developed demographic framework for analyzing selection to data from a 20-year study of a wild population of moose, Alces alces. In this population, a genetic pedigree has been established all the way back to founders.

View Article and Find Full Text PDF

Investigating factors which affect the decline in survival with age, i.e. actuarial senescence, is important in order to understand how demographic rates vary in wild populations.

View Article and Find Full Text PDF

Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics.

View Article and Find Full Text PDF

An extension of the selection differential in the Robertson-Price equation for the mean phenotype in an age-structured population is provided. Temporal changes in the mean phenotype caused by transient fluctuations in the age-distribution and variation in mean phenotype among age classes, which can mistakenly be interpreted as selection, will disappear if reproductive value weighting is applied. Changes in any weighted mean phenotype in an age-structured population may be decomposed into between- and within-age class components.

View Article and Find Full Text PDF