The transition from a ballistic to a diffusive regime of heat transfer is studied using two models. The first model is a one-dimensional chain with bonds, capable of dissociation. Interparticle forces in the chain are harmonic for bond deformations below a critical value, corresponding to the dissociation, and zero above this value.
View Article and Find Full Text PDFA thermal diode or rectifier is a system that transmits heat or energy in one direction better than in the opposite direction. We investigate the influence of the distribution of energy among wave numbers on the diode effect for the junction of two dissimilar harmonic chains. An analytical expression for the diode coefficient, characterizing the difference between heat fluxes through the junction in two directions, is derived.
View Article and Find Full Text PDFWe study propagation of wave packets through the interface between two dissimilar harmonic chains with on-site potentials (e.g., chains lying on elastic foundations).
View Article and Find Full Text PDFWe investigate the unsteady heat (energy) transport in an infinite mass-in-mass chain with a given initial temperature profile. The chain consists of two sublattices: the β-Fermi-Pasta-Ulam-Tsingou (FPUT) chain and oscillators (of a different mass) connected to each FPUT particle. Initial conditions are such that initial kinetic temperatures of the FPUT particles and the oscillators are equal.
View Article and Find Full Text PDFAn interferometric signal processing method for localizing a broadband moving sound source in an oceanic waveguide is proposed and studied theoretically and experimentally. The field of a moving sound source in waveguide creates a stable interference pattern of the intensity distribution (interferogram) I(ω,t) in the frequency-time domain. Sound intensity is accumulated along interference fringes over the observation time.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2022
We study the evolution of initial temperature profiles in a two-dimensional isolated harmonic graphene lattice. Two heat transfer problems are solved analytically and numerically. In the first problem, the evolution of a spatially sinusoidal initial temperature profile is considered.
View Article and Find Full Text PDFThe equilibration of sinusoidally modulated distribution of the kinetic temperature is analyzed in the β-Fermi-Pasta-Ulam-Tsingou chain with different degrees of nonlinearity and for different wavelengths of temperature modulation. Two different types of initial conditions are used to show that either one gives the same result as the number of realizations increases and that the initial conditions that are closer to the state of thermal equilibrium give faster convergence. The kinetics of temperature equilibration is monitored and compared to the analytical solution available for the linear chain in the continuum limit.
View Article and Find Full Text PDFWe study thermal equilibration in face-centered cubic lattices with harmonic and anharmonic (Lennard-Jones) interactions. Initial conditions are chosen such that the kinetic temperatures, corresponding to three spatial directions, are different. We show that in the anharmonic case the approach to thermal equilibrium has two time scales.
View Article and Find Full Text PDFWe study conversion of thermal energy to mechanical energy and vice versa in an α-Fermi-Pasta-Ulam-Tsingou (FPUT) chain with a spatially sinusoidal profile of initial temperature. We show analytically that coupling between macroscopic dynamics and quasiballistic heat transport gives rise to mechanical vibrations with growing amplitude. This phenomenon is referred to as ballistic resonance.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2020
We study dynamical phenomena in a harmonic graphene (honeycomb) lattice, consisting of equal particles connected by linear and angular springs. Equations of in-plane motion for the lattice are derived. Initial conditions typical for molecular dynamic modelling are considered.
View Article and Find Full Text PDFA one-dimensional chain of pointwise particles harmonically coupled with nearest neighbors and placed in sixth-order polynomial on-site potentials is considered. The power of the energy source in the form of single ac driven particle is calculated numerically for different amplitudes A and frequencies ω within the linear phonon band. The results for the on-site potentials with hard and soft anharmonicity types are compared.
View Article and Find Full Text PDFAn approach for analytical description of thermal processes in harmonic lattices is presented. We cover longitudinal and transverse vibrations of chains and out-of-plane vibrations of two-dimensional lattices with interactions of an arbitrary number of neighbors. The motion of each particle is governed by a single scalar equation and therefore the notion 'scalar lattice' is used.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2012
A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics, concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the deformation of a single bond.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2010
The system of particles (atoms) interacting via multibody interatomic potential of general form is considered. Possible variants of partition for the total force acting on a single particle into pair contributions are discussed. Two definitions for the force acting between a pair of particles are compared.
View Article and Find Full Text PDF