Publications by authors named "Kutuzov M"

Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study  >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) play a key role in DNA repair. As major sensors of DNA damage, they are activated to produce poly(ADP-ribose). PARP1/PARP2 inhibitors have emerged as effective drugs for the treatment of cancers with BRCA deficiencies.

View Article and Find Full Text PDF

The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg, Ca, Mn, spermidine, or spermine can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly).

View Article and Find Full Text PDF

Many archetypal and emerging classes of small-molecule therapeutics form covalent protein adducts. In vivo, both the resulting conjugates and their off-target side-conjugates have the potential to elicit antibodies, with implications for allergy and drug sequestration. Although β-lactam antibiotics are a drug class long associated with these immunological phenomena, the molecular underpinnings of off-target drug-protein conjugation and consequent drug-specific immune responses remain incomplete.

View Article and Find Full Text PDF

CD8+ T cells contribute to immune responses by producing cytokines when their T-cell receptors (TCRs) recognise peptide antigens on major-histocompability-complex class I. However, excessive cytokine production can be harmful. For example, cytokine release syndrome is a common toxicity observed in treatments that activate T cells, including chimeric antigen receptor (CAR)-T-cell therapy.

View Article and Find Full Text PDF

Chromatin is an epigenetic platform for implementation of DNA-dependent processes. Nucleosome, as a basic level of chromatin compaction, largely determines its properties and structure. In the study of nucleosomes structure and functions physicochemical tools are actively used, such as magnetic and optical "tweezers", "DNA curtains", nuclear magnetic resonance, X-ray crystallography, and cryogenic electron microscopy, as well as optical methods based on Förster resonance energy transfer.

View Article and Find Full Text PDF

The consumption of fish in food may contain mercury, a harmful element and dangerous chemical detrimental to human health. The purpose of this study was to determine the mercury level in the hair of pregnant women with different fish intakes in their diets. The concentration of total mercury in hair was determined using an atomic absorption spectrometer.

View Article and Find Full Text PDF

Understanding cellular decisions due to receptor-ligand interactions at cell-cell interfaces has been hampered by the difficulty of independently varying the surface density of multiple different ligands. Here, we express the synthetic binder protein SpyCatcher, designed to form spontaneous covalent bonds with interactors carrying a Spytag, on the cell surface. Using this, we show that addition of different concentrations and combinations of native Spytag-fused ligands allows for the combinatorial display of ligands on cells within minutes.

View Article and Find Full Text PDF

CRISPR/Cas9 system is а powerful gene editing tool based on the RNA-guided cleavage of target DNA. The Cas9 activity can be modulated by proteins involved in DNA damage signalling and repair due to their interaction with double- and single-strand breaks (DSB and SSB, respectively) generated by wild-type Cas9 or Cas9 nickases. Here we address the interplay between Streptococcus pyogenes Cas9 and key DNA repair factors, including poly(ADP-ribose) polymerase 1 (SSB/DSB sensor), its closest homolog poly(ADP-ribose) polymerase 2, Ku antigen (DSB sensor), DNA ligase I (SSB sensor), replication protein A (DNA duplex destabilizer), and Y-box binding protein 1 (RNA/DNA binding protein).

View Article and Find Full Text PDF

Genome compaction is one of the important subject areas for understanding the mechanisms regulating genes' expression and DNA replication and repair. The basic unit of DNA compaction in the eukaryotic cell is the nucleosome. The main chromatin proteins responsible for DNA compaction have already been identified, but the regulation of chromatin architecture is still extensively studied.

View Article and Find Full Text PDF

Base excision repair (BER) is aimed at repair of damaged bases, which are the largest group of DNA lesions. The main steps of BER are recognition and removal of the aberrant base, cutting of the DNA sugar-phosphate backbone, gap processing (including dNMP insertion), and DNA ligation. The precise function of BER depends on the regulation of each step by regulatory/accessory proteins, the most important of which is poly(ADP-ribose) (PAR) polymerase 1 (PARP1).

View Article and Find Full Text PDF

Chimeric antigen receptors (CARs) can redirect T cells to target abnormal cells, but their activity is limited by a profound defect in antigen sensitivity, the source of which remains unclear. Here, we show that CARs have a > 100-fold lower antigen sensitivity compared to the T cell receptor (TCR) when antigen is presented on antigen-presenting cells (APCs) but nearly identical sensitivity when antigen is presented as purified protein. We next systematically measured the impact of engaging important T cell accessory receptors (CD2, LFA-1, CD28, CD27, and 4-1BB) on antigen sensitivity by adding their purified ligands.

View Article and Find Full Text PDF

T cells use their T-cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity foreign peptide major-histocompatibility-complexes (pMHCs) based on the TCR/pMHC off-rate. It is now appreciated that T cells generate mechanical forces during this process but how force impacts the TCR/pMHC off-rate remains debated. Here, we measured the effect of mechanical force on the off-rate of multiple TCR/pMHC interactions.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are DNA-dependent poly(ADP-ribose)transferases localized in nucleus. They have a significant homology in the C-terminal catalytic domain structure but differ in their N-terminal DNA-binding parts. The structural difference has an impact on the interaction of PARP1 and PARP2 with DNA and their DNA-dependent activation.

View Article and Find Full Text PDF

Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor.

View Article and Find Full Text PDF

Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response to DNA damage. These proteins are involved in the base excision repair (BER) process. Despite the extensive research, it remains unknown how PARPs are involved in the regulation of the BER process and how the roles are distributed between the DNA-dependent members of the PARP family.

View Article and Find Full Text PDF

SARS-CoV-2 Spike (Spike) binds to human angiotensin-converting enzyme 2 (ACE2) and the strength of this interaction could influence parameters relating to virulence. To explore whether population variants in ACE2 influence Spike binding and hence infection, we selected 10 ACE2 variants based on affinity predictions and prevalence in gnomAD and measured their affinities and kinetics for Spike receptor binding domain through surface plasmon resonance (SPR) at 37°C. We discovered variants that reduce and enhance binding, including three ACE2 variants that strongly inhibited (p.

View Article and Find Full Text PDF

It is known that in low magnetic fields the superfluid transition of ^{3}He in nematic aerogel occurs into the polar phase. Using a vibrating aerogel resonator, we observe that in high magnetic fields this transition splits into two discrete transitions, occurring at different temperatures. According to theoretical models, a new superfluid phase-the β phase-should be realized between these two transitions.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerases (PARPs) is one of the immediate cellular responses to DNA damage. The histone PARylation factor 1 (HPF1) discovered recently to form a joint active site with PARP1 and PARP2 was shown to limit the PARylation activity of PARPs and stimulate their NAD-hydrolase activity. Here we demonstrate that HPF1 can stimulate the DNA-dependent and DNA-independent autoPARylation of PARP1 and PARP2 as well as the heteroPARylation of histones in the complex with nucleosome.

View Article and Find Full Text PDF

The interaction between the SARS-CoV-2 virus Spike protein receptor binding domain (RBD) and the ACE2 cell surface protein is required for viral infection of cells. Mutations in the RBD are present in SARS-CoV-2 variants of concern that have emerged independently worldwide. For example, the B.

View Article and Find Full Text PDF

T cells use their T cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self peptides presented on major histocompatibility complex (pMHC) antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities and use it to measure the discriminatory power of the TCR and the factors affecting it.

View Article and Find Full Text PDF
Article Synopsis
  • PARP2 plays a role in base excision repair (BER) and forms dynamic complexes with other BER proteins, unlike its counterpart PARP1.
  • The binding affinities and oligomerization states of PARP2 and PARP1 were analyzed using fluorescence and light scattering techniques, revealing that PARP2 prefers to create heterocomplexes with PARP1.
  • PARP2 exhibits stronger autoregulation in PAR synthesis and is more sensitive to inhibition by XRCC1, suggesting it may have distinct functions in BER processes, potentially independent of XRCC1.
View Article and Find Full Text PDF

Immune receptors signal by recruiting (or tethering) enzymes to their cytoplasmic tails to catalyze reactions on substrates within reach. This is the case for the phosphatase SHP-1, which, upon tethering to inhibitory receptors, dephosphorylates diverse substrates to control T cell activation. Precisely how tethering regulates SHP-1 activity is incompletely understood.

View Article and Find Full Text PDF