High-resolution imaging of Cu/low-k on-chip interconnect stacks in advanced microelectronic products is demonstrated using full-field transmission X-ray microscopy (TXM). The comparison of two lens-based laboratory X-ray microscopes that are operated at two different photon energies, 8.0 keV and 9.
View Article and Find Full Text PDFHigh-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disease. Some cases of PD may be caused by genetic factors, among which mutations in the LRRK2 and SNCA genes play an important role. To develop effective neuroprotective strategies for PD, it is important to diagnose the disease at the earliest stages of the neurodegenerative process.
View Article and Find Full Text PDFCorrosion of steel reinforcements in concrete constructions is a worldwide problem. To assess the degradation of rebars in reinforced concrete, an accurate description of electric current, potential and concentrations of various species present in the concrete matrix is necessary. Although the concrete matrix is a heterogeneous porous material with intricate microstructure, mass transport has been treated in a homogeneous material so far, modifying bulk transport coefficients by additional factors (porosity, constrictivity, tortuosity), which led to so-called effective coefficients (e.
View Article and Find Full Text PDFThe combination of near edge X-ray absorption spectroscopy with nanoscale X-ray imaging is a powerful analytical tool for many applications in energy technologies, catalysis, which are critical to combat climate change, as well as microelectronics and life science. Materials from these scientific areas often contain key elements, such as Si, P, S, Y, Zr, Nb, and Mo as well as lanthanides, whose X-ray absorption edges lie in the so-called tender photon energy range 1.5-5.
View Article and Find Full Text PDFInvited for the cover of this issue are Maksym Opanasenko and co-workers at Charles University in Prague, IKTS and deepXscan GmbH in Dresden. The image depicts a controllable crystallization mechanism that can be switched from classical to reversed crystal growth by manipulating the interplay between silica particles and the structure-directing agent. Read the full text of the article at 10.
View Article and Find Full Text PDFCrystal growth mechanisms govern a wide range of properties of crystalline materials. Reversed crystal growth is one of the nonclassical mechanisms observed in many materials. However, the reversed crystallization starting from amorphous aggregates and the key factors driving this growth remain elusive.
View Article and Find Full Text PDFThe 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi electrocatalysts anchored on MoO cuboids aligned on Ni foam (MoNi/MoO@Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO and MoNi.
View Article and Find Full Text PDFDetailed and accurate three-dimensional (3D) information about the morphology of hierarchically structured materials is derived from multi-scale X-ray computed tomography (XCT) and subsequent 3D data reconstruction. High-resolution X-ray microscopy and nano-XCT are suitable techniques to nondestructively study nanomaterials, including porous or skeleton materials. However, laboratory nano-XCT studies are very time-consuming.
View Article and Find Full Text PDFThe damage to the enteric nervous system structures and the localization of total and phosphorylated α-synuclein, the main pathomorphological marker of parkinsonism, were studied by immunomorphological methods on small intestine wholemounts from rats with parkinsonism induced by systemic administration of paraquat. Reduced density of neurons in the myenteric ganglia and degenerative changes with accumulation of phosphorylated α-synuclein in sympathetic afferents to the small intestine were revealed. Phosphorylated α-synuclein was also found in non-neuronal cells located outside the ganglia.
View Article and Find Full Text PDFThe mechanical properties such as compressive strength and nanohardness were investigated for mollusk shells. The compressive strength was evaluated through a uniaxial static compression test performed along the load directions parallel and perpendicular to the shell axis, respectively, while the hardness and Young modulus were measured using nanoindentation. In order to observe the crack propagation, for the first time for such material, the in-situ X-ray microscopy (nano-XCT) imaging (together with 3D reconstruction based on the acquired images) during the indentation tests was performed.
View Article and Find Full Text PDFDiatom frustules, with their diverse three-dimensional regular silica structures and nano- to micrometer dimensions, represent perfect model systems for biomimetic fabrication of materials and devices. The structure of a frustule of the diatom Didymosphenia geminata was nondestructively visualized using nano X-ray computed tomography (XCT) and transferred into a CAD file for the first time. Subsequently, this CAD file was used as the input for an engineered object, which was manufactured by applying an additive manufacturing technique (3D Selective Laser Melting, SLM) and using titanium powder.
View Article and Find Full Text PDFAge-related neurodegenerative diseases, including Parkinson's disease, are characterized by a number of pathomorphological signs, such as neuron loss in certain brain structures, gliosis, iron accumulation. However, the literature indicates that these signs can also be observed during normal (physiological) aging. The aim of our work was to evaluate qualitative and quantitative morphochemical changes in neurons and neuroglia, and also to localize iron (II) compounds in the human striatum during physiological aging.
View Article and Find Full Text PDFChanges in the structure of the olfactory bulbs after long-term intranasal administration of pesticide rotenone, a classical inductor of parkinsonism, to rats were studied by the methods of immunomorphology. In rats intranasally receiving rotenone in a dose of 2.5 mg/kg every other day over 2 weeks, a decrease in the density of dopaminergic neurons and the area of astrocyte processes in the olfactory bulbs, activation of microglia in the glomerular layer, and enhanced α-synuclein phosphorylation and its accumulation in the bodies of mitral layer neurons were observed.
View Article and Find Full Text PDFAim: to clarify the features of morphochemical changes in the substantia nigra cellular structures in Parkinson's disease.
Material And Methods: The structural characteristics of the substantia nigra were studied microscopically and quantified using computer morphometric methods at brain autopsies of individuals with Parkinson's disease who had died from intercurrent diseases and those who had no evidence of neurological disorders in their history (a control group).
Results: This investigation could clarify the features of morphochemical changes in both the neural network structures and the glial populations of the substantia nigra in Parkinson's disease.
Zh Mikrobiol Epidemiol Immunobiol
January 1954