A long tracrRNA (tracr-L), which naturally act as single guide RNA, and its truncated version, Δtracr-L, from S. pyogenes, efficiently induce Cas9-mediated double-strand breaks (DSBs) in plant genomic loci, as demonstrated by in vitro cleavage assay and protoplast transfection. CRISPR-Cas system provides a form of immune memory in prokaryotes and archaea, protecting them against viruses and foreign genetic elements.
View Article and Find Full Text PDFUnlabelled: Doubled haploid (DH) breeding is a powerful technique to ensure global food security via accelerated crop improvement. DH can be produced by employing haploid inducer stock (HIS). Widely used HIS in maize is known to be governed by , , and genes.
View Article and Find Full Text PDFRNA-Seq technology was used to analyze the transcriptome of two rice hybrids, Ajay (based on wild-abortive (WA)-cytoplasm) and Rajalaxmi (based on Kalinga-cytoplasm), and their respective parents at the panicle initiation (PI) and grain filling (GF) stages. Around 293 and 302 million high quality paired-end reads of Ajay and Rajalaxmi, respectively, were generated and aligned against the Nipponbare reference genome. Transcriptome profiling of Ajay revealed 2814 and 4819 differentially expressed genes (DEGs) at the PI and GF stages, respectively, as compared to its parents.
View Article and Find Full Text PDFIn the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects.
View Article and Find Full Text PDFThe generation of sheath blight (ShB)-resistant transgenic rice plants through the expression of Arabidopsis NPR1 gene is a significant development for research in the field of biotic stress. However, to our knowledge, regulation of the proteomic and metabolic networks in the ShB-resistant transgenic rice plants has not been studied. In the present investigation, the relative proteome and metabolome profiles of the non-transformed wild-type and the AtNPR1-transgenic rice lines prior to and subsequent to the R.
View Article and Find Full Text PDFAn efficient genetic transformation system is a prerequisite for studying gene functions, molecular breeding program, and introducing new traits. mediated genetic transformation is a widely preferred and accepted method for many plants, including pigeon pea. However, the efficiency of transformation of pigeon pea using the existing protocols is low and time-consuming.
View Article and Find Full Text PDFThis review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice.
View Article and Find Full Text PDFThe total digital information today amounts to 3.52 × 10 bits globally, and at its consistent exponential rate of growth is expected to reach 3 × 10 bits by 2040. Data storage density of silicon chips is limited, and magnetic tapes used to maintain large-scale permanent archives begin to deteriorate within 20 years.
View Article and Find Full Text PDFRice sheath blight disease, caused by the fungus Rhizoctonia solani, is considered the second most important disease of rice after blast. NPR1 (non expressor of PR1) is the central regulator of systemic acquired resistance (SAR) conferring broad spectrum resistance to various pathogens. Previous reports have indicated that constitutive expression of the Arabidopsis thaliana NPR1 (AtNPR1) gene results in disease resistance in rice but has a negative impact on growth and agronomic traits.
View Article and Find Full Text PDFGreen tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani.
View Article and Find Full Text PDFBackground: Majority of the Asian people depend on rice for nutritional energy. Rice cultivation and yield are severely affected by soil salinity stress worldwide. Marker assisted breeding is a rapid and efficient way to develop improved variety for salinity stress tolerance.
View Article and Find Full Text PDFWe studied pod-specific msg promoter from soybean and developed different transgenic lines of chickpea expressing fused cry1Ab/Ac constitutively and pod specifically for resistance against the destructive pest Helicoverpa armigera. Crystal (Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt) play an important role in controlling infestation of Helicoverpa armigera, which has been considered a serious problem in chickpea productivity. This study was undertaken to overcome the problem by introducing fused cry1Ab/Ac insecticidal gene under the control of pod-specific soybean msg promoter as well as rice actin1 promoter into chickpea var.
View Article and Find Full Text PDF