In recent years, limited works on EOG (electrooculography)-based biometric authentication systems have been carried out with eye movements or eye blinking activities in the current literature. EOGs have permanent and unique traits that can separate one individual from another. In this work, we have investigated FSST (Fourier Synchrosqueezing Transform)-ICA (Independent Component Analysis)-EMD (Empirical Mode Decomposition) robust framework-based EOG-biometric authentication ( verification) performances using ensembled RNN (Recurrent Neural Network) deep models voluntary eye blinkings movements.
View Article and Find Full Text PDFBiometric studies based on electroencephalography (EEG) have received increasing attention because each individual has a dynamic and unique pattern. However, classic EEG-based biometrics have significant deficiencies, including noise-prone signals, gel-based electrodes, and the need for multi-training/multi-channel acquisition and high mental effort. In contrast, steady-state visually evoked potential (SSVEP)-based biometrics have the important advantages of high signal-to-noise ratio and untrained usage.
View Article and Find Full Text PDFThe prediction of hospital patients and outpatients with suspected arboviral infection individuals in research-limited settings of the urban areas is defined as a challenging process for clinicians. Dengue, Chikungunya, and Zika arboviruses have gained attention in recent years because of the high prevalence in the society and financial burden of major global health systems. In this study, we proposed a machine learning algorithm based prediction model over retrospective medical records, which are named as SISA (the Severity Index for Suspected Arbovirus) and SISAL (the Severity Index for Suspected Arbovirus with Laboratory) datasets.
View Article and Find Full Text PDFAustralas Phys Eng Sci Med
June 2018
The tongue is an aesthetically useful organ located in the oral cavity. It can move in complex ways with very little fatigue. Many studies on assistive technologies operated by tongue are called tongue-human computer interface or tongue-machine interface (TMI) for paralyzed individuals.
View Article and Find Full Text PDF