Eye loss occurs convergently in numerous animal phyla as an adaptation to dark environments. We investigate the cave planarian Girardia multidiverticulata (Gm), a representative species of the Spiralian clade, to study mechanisms of eye loss. We found that Gm, which was previously described as an eyeless species, retains rudimentary and functional eyes.
View Article and Find Full Text PDFAs we explore beyond Earth, astronauts may be at risk for harmful DNA damage caused by ionizing radiation. Double-strand breaks are a type of DNA damage that can be repaired by two major cellular pathways: non-homologous end joining, during which insertions or deletions may be added at the break site, and homologous recombination, in which the DNA sequence often remains unchanged. Previous work suggests that space conditions may impact the choice of DNA repair pathway, potentially compounding the risks of increased radiation exposure during space travel.
View Article and Find Full Text PDFNeuronal circuits damaged or lost after injury can be regenerated in some adult organisms, but the mechanisms enabling this process are largely unknown. We used the planarian to study visual system regeneration after injury. We identify a rare population of muscle cells tightly associated with photoreceptor axons at stereotyped positions in both uninjured and regenerating animals.
View Article and Find Full Text PDFHuman spaceflight endeavors present an opportunity to expand our presence beyond Earth. To this end, it is crucial to understand and diagnose effects of long-term space travel on the human body. Developing tools for targeted, on-site detection of specific DNA sequences will allow us to establish research and diagnostics platforms that will benefit space programs.
View Article and Find Full Text PDFDuring animal regeneration, cells must organize into discrete and functional systems. We show that self-organization, along with patterning cues, govern progenitor behavior in planarian regeneration. Surgical paradigms allowed the manipulation of planarian eye regeneration in predictable locations and numbers, generating alternative stable neuroanatomical states for wild-type animals with multiple functional ectopic eyes.
View Article and Find Full Text PDFGlioblastoma is the most common and most aggressive type of primary brain tumor. Current approaches in the treatment of glioblastoma are not effective enough to increase patient survival or prevent recurrence following surgery. Consequently, the search for potential drug targets is ongoing.
View Article and Find Full Text PDFThe human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans but virtually absent in rodents, called outer radial glia (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype-specific sorting with transcriptome-wide RNA sequencing to identify genes enriched in human ORG, which included targets of the transcription factor neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs.
View Article and Find Full Text PDFObjective: To identify a genetic cause for migrating partial seizures in infancy (MPSI).
Methods: We characterized a consanguineous pedigree with MPSI and obtained DNA from affected and unaffected family members. We analyzed single nucleotide polymorphism 500K data to identify regions with evidence of linkage.
The human neocortex has numerous specialized functional areas whose formation is poorly understood. Here, we describe a 15-base pair deletion mutation in a regulatory element of GPR56 that selectively disrupts human cortex surrounding the Sylvian fissure bilaterally including "Broca's area," the primary language area, by disrupting regional GPR56 expression and blocking RFX transcription factor binding. GPR56 encodes a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor required for normal cortical development and is expressed in cortical progenitor cells.
View Article and Find Full Text PDFA major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Because recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of three normal individuals, recovering >80% of germline insertions from single neurons.
View Article and Find Full Text PDFCharged multivesicular body protein 1A (CHMP1A; also known as chromatin-modifying protein 1A) is a member of the ESCRT-III (endosomal sorting complex required for transport-III) complex but is also suggested to localize to the nuclear matrix and regulate chromatin structure. Here, we show that loss-of-function mutations in human CHMP1A cause reduced cerebellar size (pontocerebellar hypoplasia) and reduced cerebral cortical size (microcephaly). CHMP1A-mutant cells show impaired proliferation, with increased expression of INK4A, a negative regulator of stem cell proliferation.
View Article and Find Full Text PDFJ Neurochem
February 2012
Abnormal cell cycle events are increasingly becoming important attributes of neurodegenerative pathology. Pin1 is a crucial target of neurodegeneration in relation to its functions regarding these abnormal cell cycle events in neurons. Pin1 is majorly involved in many aspects of cell cycle regulation and it has also been suggested to have a neuroprotective function against neurodegenerative pathologies.
View Article and Find Full Text PDFThis study aimed to examine the association between time to tumor recurrence, angiogenic potential and tumor contrast-enhancement. Tumor samples were taken from 20 patients with low-grade oligodendroglioma and examined for their angiogenic potential using an in vivo rat corneal model of angiogenesis. Patients were evaluated for tumor contrast enhancement prior to surgical excision using MRI and they were followed for tumor recurrence.
View Article and Find Full Text PDF