Publications by authors named "Kusum K Singh"

SAP18 protein was originally discovered in association with the SIN3 transcriptional repressor complex. Subsequent biochemical fractionation studies identified SAP18 as a component of another distinct trimeric complex termed as the apoptosis- and splicing-associated protein (ASAP) complex. The existence of SAP18 in distinct complexes highlights its dual role in transcriptional and splicing regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Nonsense-mediated mRNA decay (NMD) is a crucial process in eukaryotes that ensures RNA quality by removing faulty transcripts, with UPF3 as a key player in this mechanism.
  • UPF3 has two forms in humans, UPF3A and UPF3B, which are involved in important cellular functions like neural development and synaptic plasticity, although the regulatory mechanisms of UPF3 are not fully understood.
  • The review explores the connection between NMD and microRNAs (miRNAs), focusing on UPF3B's role in neurodevelopment, while also discussing tools for predicting miRNA targets and methods for validating these interactions in research.
View Article and Find Full Text PDF

Unlabelled: RNA-binding protein with serine-rich domain 1, RNPS1, is a global guardian of splicing fidelity and has implications in cervical cancer cell progression. We previously observed elevated expression in cervical cancer cells compared to normal cells. To understand the mechanisms that lead to the dysregulation of RNPS1 expression in cervical cancer cells, we focused on microRNAs.

View Article and Find Full Text PDF

Sin3 associated protein 18 (SAP18) is an evolutionary conserved protein, originally discovered in a complex with the transcriptional regulatory protein, Sin3. Subsequent investigations revealed SAP18 as an integral splicing component of the exon junction complex (EJC)-associated apoptosis-and splicing-associated protein (ASAP)/PNN-RNPS1-SAP18 (PSAP) complex. In association with Sin3, SAP18 contributes toward transcriptional repression of genes implicated in embryonic development, stress response, human immunodeficiency virus type 1 replication, and tumorigenesis.

View Article and Find Full Text PDF

RNA-binding protein with serine-rich domain 1 (RNPS1) gets deposited on the mRNA during the process of splicing and concomitantly associates with the exon junction complex (EJC). RNPS1 participates in post-transcriptional gene regulation, including constitutive and alternative splicing, transcriptional regulation and nonsense-mediated mRNA decay. In this study, we found that the tethering of RNPS1 or its isolated serine-rich domain (S domain) causes exon inclusion of an HIV-1 splicing substrate.

View Article and Find Full Text PDF

MAGOH and MAGOHB are paralog proteins that can substitute each other in the exon junction complex (EJC). The EJC is formed of core components EIF4A3, RBM8A, and MAGOH/MAGOHB. As a part of the EJC, MAGOH proteins are required for mRNA splicing, export, translation and nonsense-mediated mRNA decay (NMD).

View Article and Find Full Text PDF

Numerous recent studies suggest that cancer-specific splicing alteration is a critical contributor to the pathogenesis of cancer. RNA-binding protein with serine-rich domain 1, RNPS1, is an essential regulator of the splicing process. However, the defined role of RNPS1 in tumorigenesis still remains elusive.

View Article and Find Full Text PDF

Background: RNA-binding protein with serine-rich domain 1 (RNPS1) is a member of a splicing-dependent mega Dalton protein complex or exon junction complex (EJC). During splicing, RNPS1 acts as a protector of global transcriptome integrity by suppressing the usage of cryptic splice sites. Additionally, RNPS1 functions in almost all stages of mRNA metabolism, including constitutive splicing, alternative splicing, translation and nonsense-mediated mRNA decay (NMD).

View Article and Find Full Text PDF

Most of the current computational models for splice junction prediction are based on the identification of canonical splice junctions. However, it is observed that the junctions lacking the consensus dimers GT and AG also undergo splicing. Identification of such splice junctions, called the non-canonical splice junctions, is also essential for a comprehensive understanding of the splicing phenomenon.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a post-transcriptional quality control mechanism that eradicates aberrant transcripts from cells. Aberrant transcripts are recognized by translating ribosomes, eRFs, and trans-acting NMD factors leading to their degradation. The trans-factors are conserved among eukaryotes and consist of UPF1, UPF2, and UPF3 proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Neural models have shown excellent performance in genome sequence prediction tasks by automatically learning important features from nucleotide sequences, but interpreting these features remains difficult.
  • This study evaluates various visualization techniques to extract relevant sequence information learned by a recurrent neural network (RNN) for identifying splice junctions, using genomic data at various nucleotide levels.
  • Results demonstrate that different visualization methods provide comparable results for branchpoint detection, with perturbation techniques outperforming back-propagation for canonical motifs, while the opposite is true for non-canonical motifs; the tool for this visualization is available on GitHub.
View Article and Find Full Text PDF

Apoptotic chromatin condensation inducer in the nucleus (Acinus) is an RNA-binding protein that has a functional role in inducing apoptotic chromatin condensation and regulating messenger RNA (mRNA) processing. Acinus interacts with the spliceosomal machinery and is a member of the ASAP (apoptosis and splicing-associated protein complex) as well as the EJC (exon junction complex), which gets deposited onto mRNA during splicing. In this study, we have used in vivo splicing assays to characterize the function of Acinus in pre-mRNA splicing more closely.

View Article and Find Full Text PDF

Productive splicing of human precursor messenger RNAs (pre-mRNAs) requires the correct selection of authentic splice sites (SS) from the large pool of potential SS. Although SS consensus sequence and splicing regulatory proteins are known to influence SS usage, the mechanisms ensuring the effective suppression of cryptic SS are insufficiently explored. Here, we find that many aberrant exonic SS are efficiently silenced by the exon junction complex (EJC), a multi-protein complex that is deposited on spliced mRNA near the exon-exon junction.

View Article and Find Full Text PDF

Identification of intron boundaries, called splice junctions, is an important part of delineating gene structure and functions. This also provides valuable insights into the role of alternative splicing in increasing functional diversity of genes. Identification of splice junctions through RNA-seq is by mapping short reads to the reference genome which is prone to errors due to random sequence matches.

View Article and Find Full Text PDF

The differential deposition of RNA-binding proteins (RBPs) on pre-mRNA mediates the processes of gene expression. One of the complexes containing RBPs that play a crucial part in RNA metabolism is the apoptosis-and splicing-associated protein (ASAP) complex. In this review, we present a summary of the structure of ASAP complex and its localization.

View Article and Find Full Text PDF

The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner.

View Article and Find Full Text PDF

The exon junction complex (EJC) participates in the regulation of many post-transcriptional steps of gene expression. EJCs are deposited on messenger RNAs (mRNAs) during splicing and their core consists of eIF4A3, MLN51, Y14, and MAGOH. Here, we show that two genes encoding MAGOH paralogs (referred to as MAGOH and MAGOHB) are expressed in mammals.

View Article and Find Full Text PDF

The ubiquitously expressed RNA-binding protein Hu antigen R (HuR) or ELAVL1 is implicated in a variety of biological processes as well as being linked with a number of diseases, including cancer. Despite a great deal of prior investigation into HuR, there is still much to learn about its function. We take an important step in this direction by conducting cross-linking and immunoprecipitation and RNA sequencing experiments followed by an extensive computational analysis to determine the characteristics of the HuR binding site and impact on the transcriptome.

View Article and Find Full Text PDF

RNPS1, Acinus, and SAP18 form the apoptosis- and splicing-associated protein (ASAP) complex, which is also part of the exon junction complex. Whereas RNPS1 was originally identified as a general activator of mRNA processing, all three proteins have been found within functional spliceosomes. Both RNPS1 and Acinus contain typical motifs of splicing regulatory proteins including arginine/serine-rich domains.

View Article and Find Full Text PDF

The cellular FLICE-inhibitory protein (c-FLIP) is a modulator of death receptor-mediated apoptosis and plays a major role in T- and B-cell homeostasis. Three different isoforms have been described on the protein level, including the long form c-FLIP(L) as well as 2 short forms, c-FLIP(S) and the recently identified c-FLIP(R). The mechanisms controlling c-FLIP isoform production are largely unknown.

View Article and Find Full Text PDF

Pythium campanulatum sp. nov. was isolated from some soil samples taken in the rhizosphere of maize (Zea mays) in north-eastern India.

View Article and Find Full Text PDF

Pythium rhizosaccharum (F-1244) was isolated from soil samples taken in the rhizosphere of sugarcane (Saccharum officinarum) in the north-eastern India. This species is characterized by its smooth-walled, spherical sporangia and rarely formed sexual structures. When formed, the antheridial branches wrap around the oogonia and soon disappear after fertilization.

View Article and Find Full Text PDF