Background: Renal involvement in sarcoidosis is rare. We evaluated the pattern of renal involvement in sarcoidosis, its clinical course, renal histology, and response to treatment.
Materials And Methods: We retrospectively analyzed the data of all cases with sarcoidosis exhibiting renal involvement referred to our department between January 2010 and December 2021.
We performed multiphoton ionization of styrene molecules and observed the formation of styrene and benzene cations, the latter being reported for the first time in the multiphoton ionization of styrene. The formation of the benzene cation reveals an internal conversion from the S state to the S state, which occurs via a S/S conical intersection at 4.66 eV above the minimum of the S state.
View Article and Find Full Text PDFNitrogen-bearing polycyclic aromatic hydrocarbons (PANHs) are ubiquitous in space. They are considered precursors to advanced biomolecules identified in meteorites. However, their chemical evolution into biomolecules in photodestructive astrophysical mediums remains a paradox.
View Article and Find Full Text PDFIntermolecular Coulombic decay (ICD) is a process whereby photoexcited molecules relax by ionizing their neighbouring molecules. ICD is efficient when intermolecular interactions are active and consequently it is observed only in weakly bound systems, such as clusters and hydrogen-bonded systems. Here we report an efficient ICD between unbound molecules excited at ambient-light intensities.
View Article and Find Full Text PDFStrong-field ionization of CHCl using femtosecond laser pulses, and the subsequent two-body dissociation of CHCl along H ( = 1-3) and HCl forming pathways, have been experimentally studied in a home-built COLTRIMS (cold target recoil ion momentum spectrometer) setup. The single ionization rate of CHCl was obtained experimentally by varying the laser intensity from 1.6 × 10 W cm to 2.
View Article and Find Full Text PDFStrong-field ionization induces various complex phenomena like bond breaking, intramolecular hydrogen migration, and bond association in polyatomic molecules. The H-atom migration and bond formation in CH3OH induced by intense femtosecond laser pulses are investigated using a Velocity Map Imaging (VMI) spectrometer. Various laser parameters like intensity (1.
View Article and Find Full Text PDFIn molecular photoemission, the analogue of the celebrated Young's double slit experiment is coherent electron emission from two equivalent atomic centers, giving rise to an interference pattern. Here multi-slit interference is investigated in inner-valence photoionization of propane, n-butane, isobutane and methyl peroxide. A more complex pattern is observed due to molecular orbital delocalization in polyatomic molecules, blurring the distinction between interference and diffraction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Observing and controlling molecular motion and in particular rotation are fundamental topics in physics and chemistry. To initiate ultrafast rotation, one needs a way to transfer a large angular momentum to the molecule. As a showcase, this was performed by hard X-ray C1s ionization of carbon monoxide accompanied by spinning up the molecule via the recoil "kick" of the emitted fast photoelectron.
View Article and Find Full Text PDFComposition of multielement samples is estimated by using a synthetic generated spectrum utilizing a nonlinear fitting routine. By fitting simultaneously a large number of emission lines, the error in the estimation is minimized. The procedure for synthetic spectrum generation includes self-absorption of emission lines by taking into account the number density of different species in the plasma.
View Article and Find Full Text PDFThe fragmentation dynamics of 2,6- and 3,5-difluoroiodobenzene after iodine 4d inner-shell photoionization with soft X-rays are studied using coincident electron and ion momentum imaging. By analyzing the momentum correlation between iodine and fluorine cations in three-fold ion coincidence events, we can distinguish the two isomers experimentally. Classical Coulomb explosion simulations are in overall agreement with the experimentally determined fragment ion kinetic energies and momentum correlations and point toward different fragmentation mechanisms and time scales.
View Article and Find Full Text PDFTemporal evolution of electronic and nuclear wave packets created in strong-field excitation of the carbon dioxide molecule is studied employing momentum-resolved ion spectroscopy and channel-selective Fourier analysis. Combining the data obtained with two different pump-probe set-ups, we observed signatures of vibrational dynamics in both, ionic and neutral states of the molecule. We consider far-off-resonance two-photon Raman scattering to be the most likely mechanism of vibrational excitation in the electronic ground state of the neutral CO.
View Article and Find Full Text PDFWe have measured resonant-Auger decay following Cl 1s(-1) excitations in HCl and CH3Cl molecules, and extracted the pseudo-cross sections of different Cl 2p(-2) final states. These cross sections show clear evidence of shake processes as well as contributions of electronic state-lifetime interference (ELI). To describe the spectra we developed a fit approach that takes into account ELI contributions and ultrafast nuclear dynamics in dissociative core-excited states.
View Article and Find Full Text PDFDirect measurements of Ar^{+} 1s^{-1}2p^{-1}nl double-core-hole shake-up states are reported using conventional single-channel photoemission, offering a new and relatively easy means to study such species. The high-quality results yield accurate energies and lifetimes of the double-core-hole states. Their photoemission spectrum also can be likened to 1s absorption of an exotic argon ion with a 2p core vacancy, providing new information about the spectroscopy of both this unusual ionic state as well as the neutral atom.
View Article and Find Full Text PDFElectronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms.
View Article and Find Full Text PDFStudies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron.
View Article and Find Full Text PDFWe have developed a new momentum spectrometer dedicated to momentum vector correlations in the context of deep core photoionization of atomic and molecular species in the gas phase. In this article, we describe the design and operation of the experimental setup. The capabilities of the apparatus are illustrated with a set of measurements done on the sulphur core 1s photoionization of gas-phase CS2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2013
Interferences in coherent emission of photoelectrons from two equivalent atomic centers in a molecule are the microscopic analogies of the celebrated Young's double-slit experiment. By considering inner-valence shell ionization in the series of simple hydrocarbons C2H2, C2H4, and C2H6, we show that double-slit interference is widespread and has built-in quantitative information on geometry, orbital composition, and many-body effects. A theoretical and experimental study is presented over the photon energy range of 70-700 eV.
View Article and Find Full Text PDFArgon 1s photoionization followed by multiple Auger decays is investigated both experimentally, by means of photoelectron-ion coincidences, and theoretically. A strong influence of the different Auger decays on the photoelectron spectra is observed through postcollision interaction which shifts the maximum of the energy distribution and distorts the spectral shape. A good agreement between the calculated and measured spectra for selected Ar(n+) ions (n=1-5) allows one to estimate the widths (lifetimes) of the intermediate states for each specific decay pathway.
View Article and Find Full Text PDF