Publications by authors named "Kurup K Pradeep"

Ca(2+) influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca(2+)/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo. Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear.

View Article and Find Full Text PDF

Binding of CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) to the NR2B subunit of the NMDAR (N-methyl-D-aspartate-type glutamate receptor) in the PSD (postsynaptic density) is essential for the induction of long-term potentiation. In this study, we show that binding of NR2B to the T-site (Thr(286)-autophosphorylation site binding pocket) of CaMKII regulates its catalysis as reflected in the kinetic parameters. The apparent S(0.

View Article and Find Full Text PDF

CaMKII (Ca2+/calmodulin-dependent protein kinase II) is expressed in high concentrations in the brain and is found enriched in the postsynaptic densities. The enzyme is activated by the binding of calmodulin to the autoregulatory domain in the presence of high levels of intracellular Ca2+, which causes removal of auto-inhibition from the N-terminal catalytic domain. Knowledge of the 3D (three-dimensional) structure of this enzyme at atomic resolution is restricted to the association domain, a region at the extreme C-terminus.

View Article and Find Full Text PDF