Publications by authors named "Kurtulus Izzetoglu"

Introduction: Achieving simultaneous cerebral blood flow (CBF) and oxygenation measures, specifically for point-of-care injury monitoring in prolonged field care, requires the implementation of appropriate methodologies and advanced medical device design, development, and evaluation. The near-infrared spectroscopy (NIRS) method measures the absorbance of light whose attenuation is related to cerebral blood volume and oxygenation. By contrast, diffuse correlation spectroscopy (DCS) allows continuous noninvasive monitoring of microvascular blood flow by directly measuring the degree of light scattering because of red blood cell (RBC) movement in tissue capillaries.

View Article and Find Full Text PDF

Purpose: Virtual arthroscopic training has become increasingly popular. However, there is a lack of efficiency-based tracking of the trainee, which may be critical for determining the specifics of training programs and adapting them for the needs of each trainee. This study aims to evaluate and compare the measures obtained with a non-invasive neurophysiological method with The Diagnostic Arthroscopy Skill Score (DASS), a commonly used assessment tool for evaluating arthroscopic skills.

View Article and Find Full Text PDF

Damage to the cerebrovascular network is a universal feature of traumatic brain injury (TBI). This damage is present during different phases of the injury and can be non-invasively assessed using functional near infrared spectroscopy (fNIRS). fNIRS signals are influenced by partial arterial carbon dioxide (PaCO), neurogenic, Mayer waves, respiratory and cardiac oscillations, whose characteristics vary in time and frequency and may differ in the presence of TBI.

View Article and Find Full Text PDF

Spatial visualization ability (SVA) has been identified as a potential key factor for academic achievement and student retention in Science, Technology, Engineering, and Mathematics (STEM) in higher education, especially for engineering and related disciplines. Prior studies have shown that training using virtual reality (VR) has the potential to enhance learning through the use of more realistic and/or immersive experiences. The aim of this study was to investigate the effect of VR-based training using spatial visualization tasks on participant performance and mental workload using behavioral (i.

View Article and Find Full Text PDF

Assessment of expertise development during training program primarily consists of evaluating interactions between task characteristics, performance, and mental load. Such a traditional assessment framework may lack consideration of individual characteristics when evaluating training on complex tasks, such as driving and piloting, where operators are typically required to execute multiple tasks simultaneously. Studies have already identified individual characteristics arising from intrinsic, context, strategy, personality, and preference as common predictors of performance and mental load.

View Article and Find Full Text PDF

Functional near infrared spectroscopy (fNIRS) measurements are confounded by signal components originating from multiple physiological causes, whose activities may vary temporally and spatially (across tissue layers, and regions of the cortex). Furthermore, the stimuli can induce evoked effects, which may lead to over or underestimation of the actual effect of interest. Here, we conducted a temporal, spectral, and spatial analysis of fNIRS signals collected during cognitive and hypercapnic stimuli to characterize effects of functional versus systemic responses.

View Article and Find Full Text PDF

Introduction: Pain assessment is challenging in neonates. Behavioral and physiological pain scales do not assess neocortical nociception, essential to pain encoding and central pain pathway development. Functional near-infrared spectroscopy (fNIRS) can assess neocortical activation to noxious stimuli from changes in oxy-(HbO) and total-hemoglobin concentrations (HbT).

View Article and Find Full Text PDF

Robot-assisted surgery systems are a recent breakthrough in minimally invasive surgeries, offering numerous benefits to both patients and surgeons including, but not limited to, greater visualization of the operation site, greater precision during operation and shorter hospitalization times. Training on robot-assisted surgery (RAS) systems begins with the use of high-fidelity simulators. Hence, the increasing demand of employing RAS systems has led to a rise in using RAS simulators to train medical doctors.

View Article and Find Full Text PDF

With an increase in consumer demand of video gaming entertainment, the game industry is exploring novel ways of game interaction such as providing direct interfaces between the game and the gamers' cognitive or affective responses. In this work, gamer's brain activity has been imaged using functional near infrared spectroscopy (fNIRS) whilst they watch video of a video game (League of Legends) they play. A video of the face of the participants is also recorded for each of a total of 15 trials where a trial is defined as watching a gameplay video.

View Article and Find Full Text PDF

The goal of this study was to examine the effects of task-related variables, such as the difficulty level, problem scenario, and experiment week, on performance and mental workload of 27 healthy adult subjects during problem solving within the spatial navigation transfer (SNT) game. The study reports task performance measures such as total time spent on a task (TT) and reaction time (RT); neurophysiological measures involving the use of functional near-infrared spectroscopy (fNIRS); and a subjective rating scale for self-assessment of mental workload (NASA TLX) to test the related hypotheses. Several within-subject repeated-measures factorial ANOVA models were developed to test the main hypothesis.

View Article and Find Full Text PDF

The use of serious game tools in training of medical professions is steadily growing. However, there is a lack of reliable performance assessment methods to evaluate learner's outcome. The aim of this study is to determine whether functional near infrared spectroscopy (fNIRS) can be used as an additional tool for assessing the learning outcome of virtual reality (VR) based learning modules.

View Article and Find Full Text PDF

Timing of the intervention for intracranial hematomas is critical for its success, specifically since expansion of the hemorrhage can result in debilitating and sometimes fatal outcomes. Led by Britton Chance, we and an extended team from University of Pennsylvania, Baylor and Drexel universities developed a handheld brain hematoma detector for early triage and diagnosis of head trauma victims. After obtaining de novo Food and Drug Administration clearance, over 200 systems are deployed in all Marine battalion aid stations around the world.

View Article and Find Full Text PDF

Anesthesia monitoring currently needs a reliable method to evaluate the effects of the anesthetics on its primary target, the brain. This study focuses on investigating the clinical usability of a functional near-infrared spectroscopy (fNIRS)-derived machine learning classifier to perform automated and real-time classification of maintenance and emergence states during sevoflurane anesthesia. For 19 surgical procedures, we examine the entire continuum of the maintenance-transition-emergence phases and evaluate the predictive capability of a support vector machine (SVM) classifier during these phases.

View Article and Find Full Text PDF

The American Society of Anesthesiologist recommends peripheral physiological monitoring during general anesthesia, which offers no information regarding the effects of anesthetics on the brain. Since no "gold standard" method exists for this evaluation, such a technique is needed to ensure patient comfort, procedure quality and safety. In this study we investigated functional near infrared spectroscopy (fNIRS) as possible monitor of anesthetic effects on the prefrontal cortex.

View Article and Find Full Text PDF

The standard-of-care guidelines published by the American Society of Anesthesiologists (ASA) recommend monitoring of pulse oximetry, blood pressure, heart rate, and end tidal CO2 during the use of anesthesia and sedation. This information can help to identify adverse events that may occur during procedures. However, these parameters are not specific to the effects of anesthetics or sedatives, and therefore they offer little, to no, real time information regarding the effects of those agents and do not give the clinician the lead-time necessary to prevent patient "awareness.

View Article and Find Full Text PDF

Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable optical neuroimaging method that can be used to assess brain dynamics during skill acquisition and performance of complex work and everyday tasks. In this paper we describe neuroergonomic studies that illustrate the use of fNIRS in the examination of training-related brain dynamics and human performance assessment. We describe results of studies investigating cognitive workload in air traffic controllers, acquisition of dual verbal-spatial working memory skill, and development of expertise in piloting unmanned vehicles.

View Article and Find Full Text PDF

This is the first study to use fNIRS to explore anaesthetic depth and awakening during surgery with general anaesthesia. A 16 channel continuous wave (CW) functional near-infrared system (fNIRS) was used to monitor PFC activity. These outcomes were compared to BIS measures.

View Article and Find Full Text PDF

Endoscopic procedures performed in the United States routinely involve the use of conscious sedation as standard of care. The use of sedation reduces patient discomfort and anxiety while improving the technical quality of the procedure, and as a result, over 98% of clinicians have adopted the practice. The tremendous benefits of sedation are offset by heightened costs, increased patient discharge time, and cardiopulmonary complication risks.

View Article and Find Full Text PDF

Data indicated that dyslexic individuals exhibited difficulties on tasks involving Working Memory (WM). Previous studies have suggested that these deficits stem from impaired processing in the Phonological Loop (PL). The PL impairment was connected to poor phonological processing.

View Article and Find Full Text PDF

The dual route model (DRM) of reading suggests two routes of reading development: the phonological and the orthographic routes. It was proposed that although the two routes are active in the process of reading; the first is more involved at the initial stages of reading acquisition, whereas the latter needs more reading training to mature. A number of studies have shown that deficient phonological processing is a core deficit in developmental dyslexia.

View Article and Find Full Text PDF

This study aimed to affirm the use of functional near-infrared spectroscopy (fNIR) in examining frontal lobe role during automatic (i.e., requires retrieval from long-term memory) and method-based (i.

View Article and Find Full Text PDF

MazeSuite is a complete toolset to prepare, present and analyze navigational and spatial experiments. MazeSuite can be used to design and edit adapted virtual 3D environments, track a participants' behavioral performance within the virtual environment and synchronize with external devices for physiological and neuroimaging measures, including electroencephalogram and eye tracking. Functional near-infrared spectroscopy (fNIR) is an optical brain imaging technique that enables continuous, noninvasive, and portable monitoring of changes in cerebral blood oxygenation related to human brain functions.

View Article and Find Full Text PDF

An accurate measure of mental workload in human operators is a critical element of monitoring and adaptive aiding systems that are designed to improve the efficiency and safety of human-machine systems during critical tasks. Functional near infrared (fNIR) spectroscopy is a field-deployable non-invasive optical brain monitoring technology that provides a measure of cerebral hemodynamics within the prefrontal cortex in response to sensory, motor, or cognitive activation. In this paper, we provide evidence from two studies that fNIR can be used in ecologically valid environments to assess the: 1) mental workload of operators performing standardized (n-back) and complex cognitive tasks (air traffic control--ATC), and 2) development of expertise during practice of complex cognitive and visuomotor tasks (piloting unmanned air vehicles--UAV).

View Article and Find Full Text PDF

Background: Evidence suggests that gait is influenced by higher order cognitive and cortical control mechanisms. However, less is known about the functional correlates of cortical control of gait.

Methods: Using functional near-infrared spectroscopy, the current study was designed to evaluate whether increased activations in the prefrontal cortex (PFC) were detected in walking while talking (WWT) compared with normal pace walking (NW) in 11 young and 11 old participants.

View Article and Find Full Text PDF

Our study focuses on the physiological effects of repetition on learning and working memory using an adaptation of Luria's Memory Word-Task (LMWT). We assess the hemodynamic response in dorsolateral prefrontal cortex (DLPFC) of 13 healthy subjects while completing LMWT. Free word recalls were acquired at the beginning, middle and end of the task.

View Article and Find Full Text PDF